Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into photosystem II assembly

Abstract

Biogenesis of photosystem II (PSII), nature’s water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM map of a PSII assembly intermediate (PSII-I) from T. elongatus, segmented into subunits.
Fig. 2: Psb34 binds to RC47 during attachment of the CP43 module.
Fig. 3: The role of the CP47 C terminus in binding of Psb28.
Fig. 4: Structural changes of the D1 and D2 D-E loops induced by binding of Psb28 and Psb34.
Fig. 5: Binding of Psb28 displaces bicarbonate as a ligand of the non-haem iron and protects PSII from damage.
Fig. 6: The role of Psb27 in Mn4CaO5 cluster assembly.
Fig. 7: Conformational changes within the active site of the Mn4CaO5 cluster.

Similar content being viewed by others

Data availability

The cryo-EM density maps are deposited in the Electron Microscopy Data Bank under accession numbers EMD-12335 (PSII-M), EMD-12336 (PSII-I) and EMD-12337 (PSII-I′). The atomic models of the cryo-EM structures are deposited in the Worldwide Protein Data Bank under accession numbers 7NHO (PSII-M), 7NHP (PSII-I) and 7NHQ (PSII-I′). The NMR backbone assignments for Psb28 bound to the C-terminal peptide of CP47 are deposited in the Biological Magnetic Resonance Bank under accession code 50747. Protein sequences with the following accession codes were downloaded from the UniProt database (P0A444, Q8DIQ1, Q8DIF8, Q8CM25, Q8DIP0, Q8DIN9, Q8DJ43, Q8DJZ6, Q9F1K9, Q8DIN8, Q8DHA7, Q8DIQ0, Q9F1R6, Q8DJI1, Q8DHJ2, Q8DG60, Q8DLJ8, Q8DMP8). Source data are provided with this paper. Additional data supporting the findings of this manuscript are available from the corresponding authors on reasonable request.

References

  1. Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez-Baracaldo, P. & Cardona, T. On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol. 225, 1440–1446 (2020).

    Article  PubMed  Google Scholar 

  3. Vinyard, D. J., Ananyev, G. M. & Dismukes, G. C. Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82, 577–606 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Boekema, E. J. et al. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc. Natl Acad. Sci. USA 92, 175–179 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cox, N., Pantazis, D. A. & Lubitz, W. Current understanding of the mechanism of water oxidation in photosystem II and its relation to XFEL data. Annu. Rev. Biochem. 89, 795–820 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Shen, J. R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66, 23–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Yano, J. et al. Light-dependent production of dioxygen in photosynthesis. Met. Ions Life Sci. 15, 13–43 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Cardona, T., Sedoud, A., Cox, N. & Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta 1817, 26–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Holzwarth, A. R. et al. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc. Natl Acad. Sci. USA 103, 6895–6900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Müh, F., Glöckner, C., Hellmich, J. & Zouni, A. Light-induced quinone reduction in photosystem II. Biochim. Biophys. Acta 1817, 44–65 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. Faller, P. et al. Rapid formation of the stable tyrosyl radical in photosystem II. Proc. Natl Acad. Sci. USA 98, 14368–14373 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roose, J. L., Frankel, L. K., Mummadisetti, M. P. & Bricker, T. M. The extrinsic proteins of photosystem II: update. Planta 243, 889–908 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Müh, F. & Zouni, A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci. 29, 1090–1119 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Shi, L. X., Hall, M., Funk, C. & Schröder, W. P. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochim. Biophys. Acta 1817, 13–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Stewart, D. H. & Brudvig, G. W. Cytochrome b559 of photosystem II. Biochim. Biophys. Acta 1367, 63–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Cox, N. et al. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation. Science 345, 804–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suga, M. et al. An oxyl/oxo mechanism for oxygen–oxygen coupling in PSII revealed by an X-ray free-electron laser. Science 366, 334–338 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Umena, Y., Kawakami, K., Shen, J. R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Krieger-Liszkay, A., Fufezan, C. & Trebst, A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98, 551–564 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Vass, I. Molecular mechanisms of photodamage in the photosystem II complex. Biochim. Biophys. Acta 1817, 209–217 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Shevela, D. et al. ‘Birth defects’ of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. Physiol. Plant. 166, 165–180 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Heinz, S., Liauw, P., Nickelsen, J. & Nowaczyk, M. Analysis of photosystem II biogenesis in cyanobacteria. Biochim. Biophys. Acta 1857, 274–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Nickelsen, J. & Rengstl, B. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609–635 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Nixon, P. J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Komenda, J. et al. Cleavage after residue Ala352 in the C-terminal extension is an early step in the maturation of the D1 subunit of photosystem II in Synechocystis PCC 6803. Biochim. Biophys. Acta 1767, 829–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Komenda, J. et al. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803. J. Biol. Chem. 283, 22390–22399 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Boehm, M. et al. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II. Philos. Trans. R. Soc. Lond. B 367, 3444–3454 (2012).

    Article  CAS  Google Scholar 

  31. Dobáková, M., Sobotka, R., Tichy, M. & Komenda, J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149, 1076–1086 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Komenda, J. et al. The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 158, 476–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Mamedov, F., Nowaczyk, M. M., Thapper, A., Rögner, M. & Styring, S. Functional characterization of monomeric photosystem II core preparations from Thermosynechococcus elongatus with or without the Psb27 protein. Biochemistry 46, 5542–5551 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Nowaczyk, M. M. et al. Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II. Plant Cell 18, 3121–3131 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roose, J. L. & Pakrasi, H. B. The Psb27 protein facilitates manganese cluster assembly in photosystem II. J. Biol. Chem. 283, 4044–4050 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Bao, H. & Burnap, R. L. Photoactivation: the light-driven assembly of the water oxidation complex of photosystem II. Front. Plant Sci. 7, 578–591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Becker, K., Cormann, K. U. & Nowaczyk, M. M. Assembly of the water-oxidizing complex in photosystem II. J. Photochem. Photobiol. B 104, 204–211 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Cheniae, G. & Martin, I. Photoactivation of the manganese catalyst of O2 evolution. I-Biochemical and kinetic aspects. Biochim. Biophys. Acta 253, 167–181 (1971).

    Article  CAS  PubMed  Google Scholar 

  39. Dasgupta, J., Ananyev, G. M. & Dismukes, G. C. Photoassembly of the water-oxidizing complex in photosystem II. Coord. Chem. Rev. 252, 347–360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Radmer, R. & Cheniae, G. M. Photoactivation of the manganese catalyst of O2 evolution. II. A two-quantum mechanism. Biochim. Biophys. Acta 253, 182–186 (1971).

    Article  CAS  PubMed  Google Scholar 

  41. Nixon, P. J. & Diner, B. A. Aspartate 170 of the photosystem II reaction center polypeptide D1 is involved in the assembly of the oxygen-evolving manganese cluster. Biochemistry 31, 942–948 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Regel, R. E. et al. Deregulation of electron flow within photosystem II in the absence of the PsbJ protein. J. Biol. Chem. 276, 41473–41478 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Nowaczyk, M. M. et al. Deletion of psbJ leads to accumulation of Psb27-Psb28 photosystem II complexes in Thermosynechococcus elongatus. Biochim. Biophys. Acta 1817, 1339–1345 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Sakata, S., Mizusawa, N., Kubota-Kawai, H., Sakurai, I. & Wada, H. Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1827, 50–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Weisz, D. A. et al. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in Photosystem II. Proc. Natl Acad. Sci. USA 114, 2224–2229 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bečková, M. et al. Association of Psb28 and Psb27 proteins with PSII–PSI supercomplexes upon exposure of Synechocystis sp. PCC 6803 to high light. Mol. Plant 10, 62–72 (2017).

    Article  PubMed  CAS  Google Scholar 

  47. Bentley, F. K., Luo, H., Dilbeck, P., Burnap, R. L. & Eaton-Rye, J. J. Effects of inactivating psbM and psbT on photodamage and assembly of photosystem II in Synechocystis sp. PCC 6803. Biochemistry 47, 11637–11646 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Grasse, N. et al. Role of novel dimeric photosystem II (PSII)–Psb27 protein complex in PSII repair. J. Biol. Chem. 286, 29548–29555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, H., Roose, J. L., Cameron, J. C. & Pakrasi, H. B. A genetically tagged Psb27 protein allows purification of two consecutive photosystem II (PSII) assembly intermediates in Synechocystis 6803, a cyanobacterium. J. Biol. Chem. 286, 24865–24871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weisz, D. A. et al. A novel chlorophyll protein complex in the repair cycle of photosystem II. Proc. Natl Acad. Sci. USA 116, 21907–21913 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mabbitt, P. D., Wilbanks, S. M. & Eaton-Rye, J. J. Structure and function of the hydrophilic photosystem II assembly proteins: Psb27, Psb28 and Ycf48. Plant Physiol. Biochem. 81, 96–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Broser, M. et al. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-Å resolution. J. Biol. Chem. 285, 26255–26262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Komenda, J. & Sobotka, R. Cyanobacterial high-light-inducible proteins—protectors of chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta 1857, 288–295 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Mulo, P. et al. Mutagenesis of the D-E loop of photosystem II reaction centre protein D1. Function and assembly of photosystem II. Plant Mol. Biol. 33, 1059–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Eaton-Rye, J. J. & Govindjee. Electron transfer through the quinone acceptor complex of photosystem II in bicarbonate-depleted spinach thylakoid membranes as a function of actinic flash number and frequency. Biochim. Biophys. Acta 935, 237–247 (1988).

    Article  CAS  Google Scholar 

  56. Allen, J. F. & Nield, J. Redox tuning in photosystem II. Trends Plant Sci. 22, 97–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Brinkert, K., De Causmaecker, S., Krieger-Liszkay, A., Fantuzzi, A. & Rutherford, A. W. Bicarbonate-induced redox tuning in photosystem II for regulation and protection. Proc. Natl Acad. Sci. USA 113, 12144–12149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cormann, K. U., Möller, M. & Nowaczyk, M. M. Critical assessment of protein cross-linking and molecular docking: an updated model for the interaction between photosystem II and Psb27. Front. Plant Sci. 7, 157 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu, H., Huang, R. Y., Chen, J., Gross, M. L. & Pakrasi, H. B. Psb27, a transiently associated protein, binds to the chlorophyll binding protein CP43 in photosystem II assembly intermediates. Proc. Natl Acad. Sci. USA 108, 18536–18541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wei, L. et al. LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J. Biol. Chem. 285, 21391–21398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Avramov, A. P., Hwang, H. J. & Burnap, R. L. The role of Ca2+ and protein scaffolding in the formation of nature’s water oxidizing complex. Proc. Natl Acad. Sci. USA 117, 28036–28045 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cormann, K. U. et al. Structure of Psb27 in solution: implications for transient binding to photosystem II during biogenesis and repair. Biochemistry 48, 8768–8770 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Fagerlund, R. D. & Eaton-Rye, J. J. The lipoproteins of cyanobacterial photosystem II. J. Photochem. Photobiol. B 104, 191–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, H. et al. Mass spectrometry-based footprinting reveals structural dynamics of loop E of the chlorophyll-binding protein CP43 during photosystem II assembly in the cyanobacterium Synechocystis 6803. J. Biol. Chem. 288, 14212–14220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Michoux, F. et al. Crystal structure of the Psb27 assembly factor at 1.6 Å: implications for binding to photosystem II. Photosynth. Res. 110, 169–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Weisz, D. A., Gross, M. L. & Pakrasi, H. B. The use of advanced mass spectrometry to dissect the life-cycle of photosystem II. Front. Plant Sci. 7, 617 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kettunen, R., Tyystjarvi, E. & Aro, E. M. Degradation pattern of photosystem II reaction center protein D1 in intact leaves. The major photoinhibition-induced cleavage site in D1 polypeptide is located amino terminally of the DE loop. Plant Physiol. 111, 1183–1190 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mulo, P., Laakso, S., Maenpaa, P. & Aro, E. M. Stepwise photoinhibition of photosystem II. Studies with Synechocystis species PCC 6803 mutants with a modified D-E loop of the reaction center polypeptide D1. Plant Physiol. 117, 483–490 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stowell, M. H. et al. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron–proton transfer. Science 276, 812–816 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, X. et al. Is bicarbonate in photosystem II the equivalent of the glutamate ligand to the iron atom in bacterial reaction centers? Biochim. Biophys. Acta 1100, 1–8 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Cheap, H. et al. M234Glu is a component of the proton sponge in the reaction center from photosynthetic bacteria. Biochim. Biophys. Acta 1787, 1505–1515 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Burnap, R. L. D1 protein processing and Mn cluster assembly in light of the emerging photosystem II structure. Phys. Chem. Chem. Phys. 6, 4803–4809 (2004).

    Article  CAS  Google Scholar 

  74. Tokano, T., Kato, Y., Sugiyama, S., Uchihashi, T. & Noguchi, T. Structural dynamics of a protein domain relevant to the water-oxidizing complex in photosystem II as visualized by high-speed atomic force microscopy. J. Phys. Chem. B 124, 5847–5857 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, M. et al. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II. eLife 6, e26933 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gisriel, C. J. et al. Cryo-electron microscopy structure of monomeric photosystem II from Synechocystis sp. PCC 6803 lacking the water-oxidation complex. Joule 4, 2131–2148 (2020).

    Article  CAS  Google Scholar 

  77. Kolling, D. R., Cox, N., Ananyev, G. M., Pace, R. J. & Dismukes, G. C. What are the oxidation states of manganese required to catalyze photosynthetic water oxidation? Biophys. J. 103, 313–322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zaltsman, L., Ananyev, G. M., Bruntrager, E. & Dismukes, G. C. Quantitative kinetic model for photoassembly of the photosynthetic water oxidase from its inorganic constituents: requirements for manganese and calcium in the kinetically resolved steps. Biochemistry 36, 8914–8922 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Stengel, A. et al. Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis. Plant Cell 24, 660–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tyryshkin, A. M. et al. Spectroscopic evidence for Ca2+ involvement in the assembly of the Mn4Ca cluster in the photosynthetic water-oxidizing complex. Biochemistry 45, 12876–12889 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Campbell, K. A. et al. Dual-mode EPR detects the initial intermediate in photoassembly of the photosystem II Mn cluster: the influence of amino acid residue 170 of the D1 polypeptide on Mn coordination. J. Am. Chem. Soc. 122, 3754–3761 (2000).

    Article  CAS  Google Scholar 

  82. Cohen, R. O., Nixon, P. J. & Diner, B. A. Participation of the C-terminal region of the D1-polypeptide in the first steps in the assembly of the Mn4Ca cluster of photosystem II. J. Biol. Chem. 282, 7209–7218 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Kuhl, H. et al. Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium. J. Biol. Chem. 275, 20652–20659 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Iwai, M., Katoh, H., Katayama, M. & Ikeuchi, M. Improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1. Plant Cell Physiol. 45, 171–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  86. Biyani, N. et al. Focus: the interface between data collection and data processing in cryo-EM. J. Struct. Biol. 198, 124–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scheres, S. H. A Bayesian view on cryo-electron microscopy structure determination. J. Mol. Biol. 415, 406–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).

    Google Scholar 

  92. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Bialek, W. et al. Crystal structure of the Psb28 accessory factor of Thermosynechococcus elongatus photosystem II at 2.3 Å. Photosynth. Res. 117, 375–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Michoux, F. et al. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. Photosynth. Res. 122, 57–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, S. & Zhang, Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 35, 3375–3382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Dobson, L., Remenyi, I. & Tusnady, G. E. CCTOP: a consensus constrained TOPology prediction web server. Nucleic Acids Res. 43, W408–W412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Trabuco, L. G., Villa, E., Schreiner, E., Harrison, C. B. & Schulten, K. Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49, 174–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  103. Ribeiro, J. V. et al. QwikMD—integrative molecular dynamics toolkit for novices and experts. Sci. Rep. 6, 26536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lindert, S. & McCammon, J. A. Improved cryoEM-guided iterative molecular dynamics—rosetta protein structure refinement protocol for high precision protein structure prediction. J. Chem. Theory Comput. 11, 1337–1346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo, Q. et al. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172, 696–705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wehmer, M. et al. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Proc. Natl Acad. Sci. USA 114, 1305–1310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. König, M. Völkel and R. Oworah-Nkruma for excellent technical assistance, K. Becker for cloning of the pIVEXPsb28His plasmid, B. Erjavec for preparation of the scheme in Fig. 1 and N. Cox for helpful discussion. J.M.S. is grateful to E. Conti for scientific independence and great mentorship and to J. M. Plitzko and W. Baumeister for access to the cryo-EM infrastructure and early career support. M.M.N. is grateful to his mentor M. Rögner for generous support. Financial support was provided by the Max Planck Society, the Helmholtz Zentrum München, the Deutsche Forschungsgemeinschaft (DFG) Research Unit FOR2092 (grant nos. EN 1194/1-1 to B.D.E. and 836/3-2 to M.M.N.), the DFG priority programme 2002 (grant no. 836/4-1 to M.M.N. and grant no. 3542/1-1 to J.D.L.), National Institutes of Health (NIH) grant no. NIH P41-GM104601 (to E.T.) and an Emmy-Noether fellowship (SCHU 3364/1-1 to J.M.S). A.K.-L. was supported by the LabEx Saclay Plant Sciences-SPS (grant no. ANR-10-LABX-0040-SPS) and the French Infrastructure for Integrated Structural Biology (FRISBI; grant no. ANR-10-INSB-05). R.S. gratefully acknowledges support from the DFG (grant nos. INST 213/757-1 FUGG and INST 213/843-1 FUGG).

Author information

Authors and Affiliations

Authors

Contributions

B.D.E., T.R., J.M.S. and M.M.N. conceived the research, prepared the figures and wrote the manuscript with the contribution of J.Z. and all other authors. M.M.N. coordinated the activities. Preparation of mutants, PSII isolation and biochemical analysis were performed by J.Z., M.M, P.L. and M.M.N. Mass spectrometry analysis was done by J.M.-C. and J.D.L. J.M.S., S.B. and B.D.E. performed the cryo-EM analysis. T.R. built the structural model with the help of S.K.S., A.C. and E.T. Fluorescence spectroscopy was carried out by J.Z. and M.M.N. EPR experiments were conducted by A.K.-L. NMR experiments were conducted and analysed by O.A. and R.S. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Till Rudack, Jan M. Schuller or Marc M. Nowaczyk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks R. Burnap, N. Nelson, A. Rutherford and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Discussion, Figs. 1–7, Tables 1 and 2, descriptions for Videos 1–4 and references.

Reporting Summary

Supplementary Video 1

Interpolated trajectory between PSII-I and PSII-M.

Supplementary Video 2

Interpolated trajectory between PSII-I and PSII-M.

Supplementary Video 3

Interpolated trajectory between PSII-I and PSII-M.

Supplementary Video 4

Interpolated trajectory between PSII-I and mature PSII (PDB-ID 3WU2).

Source data

Source Data Fig. 2

Unprocessed two-dimensional polyacrylamide gel electrophoresis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabret, J., Bohn, S., Schuller, S.K. et al. Structural insights into photosystem II assembly. Nat. Plants 7, 524–538 (2021). https://doi.org/10.1038/s41477-021-00895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00895-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing