Abstract
Despite the crucial importance of flower-visiting insects in modern ecosystems, there is little fossil evidence on the origins of angiosperm pollination. Most reports of pollination in the Mesozoic fossil record have been based on the co-occurrence of the purported pollinators with pollen grains and assumed morphological adaptations for vectoring pollen. Here, we describe an exceptionally preserved short-winged flower beetle (Cucujoidea: Kateretidae) from mid-Cretaceous amber, Pelretes vivificus gen. et sp. nov., associated with pollen aggregations and coprolites consisting mainly of pollen, providing direct evidence of pollen-feeding in a Cretaceous beetle and confirming that diverse beetle lineages visited early angiosperms in the Cretaceous. The exquisite preservation of our fossil permits the identification of the pollen grains as Tricolpopollenites (Asteridae or Rosidae), representing a record of flower beetle pollination of a group of derived angiosperms in the Mesozoic and suggesting that potentially diverse beetle lineages visited early angiosperms by the mid-Cretaceous.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The fossils reported in this study are part of the publicly accessible collections of the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. Supplementary videos are available from MendeleyData: https://doi.org/10.17632/jdn7kvd4bd.1.
Each amber piece in the collection of the Nanjing Institute of Geology and Palaeontology has an informal field number (not identical to the accession number provided when published and deposited permanently), indicating when the specimen was collected and by whom. On the basis of the present specimen’s field number (HUANG-HP-B-7567), its purchase can be traced to Prof. Chenyang Cai and Prof. Diying Huang, who acquired it in late 2016 from a Myanmar amber dealer whose family has been working in the amber business for many years. The local amber dealer and his workers mined the raw amber material (not cut, shaped or polished) legally with an excavation permit from a hill named Noije Bum (26° 15′ 0.00″ N, 96° 33′ 0.00″ E), near Tanai Township (26° 21′ 33.41″ N, 96° 43′ 11.88″ E). It was transported to Myitkyina for further processing such as trimming, shaping and polishing. From there, jewellery-grade specimens (in our case, the amber piece was sold as a small, light yellow and transparent pendant) were carried and sold legally in Ruili county in Dehong Prefecture at the border of China and Myanmar. We can confirm that the amber was mined in late 2016, long before the local armed conflict in the mining area.
References
Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B 365, 2959–2971 (2010).
Huang, D.-Y. et al. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6, 23004 (2016).
Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2, 408 (2019).
Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl Acad. Sci. USA 116, 24707–24711 (2019).
Peris, D. et al. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23, 100913 (2020).
Ahrens, D., Schwarzer, J. & Vogler, A. P. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 281, 20141470 (2014).
Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).
Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon, 1979).
Poinar, G., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).
Davies, E. H. Palynological Analysis and Age Assignments of Two Burmese Amber Sample Sets (Branta Biostratigraphy for Leeward Capital, 2001).
Barrón, E. et al. Palynology of Aptian and upper Albian (lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain). Cretac. Res. 52, 292–312 (2015).
Azar, D., Dejax, J. & Masure, E. Palynological analysis of amber-bearing clay from the lower Cretaceous of central Lebanon. Acta Geol. Sin. Engl. Ed. 85, 942–949 (2011).
Barrón, E., Comas-Rengifo, M. J. & Elorza, L. Contribuciones al estudio palinológico del Cretácico Inferior de la Cuenca Vasco-Cantábrica: los afloramientos ambarigenos de Peñacerrada (España). Coloq. Paleontol. 52, 135–156 (2001).
Cai, C. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 20182175 (2019).
Mao, Y. Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).
Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).
Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 116, 11345–11350 (2019).
Jelínek, J. & Cline, A. R. in Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles Morphology and Systematics (eds Leschen, R. A. B. et al.) Vol. 2 386–390 (Walter De Gruyter, 2010).
Hisamatsu, S. A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea). Acta Entomol. Musei Natl Pragae 36, 551–585 (2011).
Peris, D. & Jelínek, J. Atypical short elytra in Cretaceous short-winged flower beetles (Coleoptera: Kateretidae). Palaeoentomology 2, 505–514 (2019).
Peris, D. & Jelínek, J. Syninclusions of two new species of short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Kachin amber (Myanmar). Cretac. Res. 106, 104264 (2020).
Poinar, G. & Brown, A. E. Furcalabratum burmanicum gen. et sp. nov., a short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Myanmar amber. Cretac. Res. 84, 240–244 (2018).
Kirejtshuk, A. G. New species of nitidulid beetles (Coleoptera, Nitidulidae) of the Australian region. Entomol. Obozr. 65, 559–573 (1986).
Timerman, D., Greene, D. F., Ackerman, J. D., Kevan, P. G. & Nardone, E. Pollen aggregation in relation to pollination vector. Int. J. Plant Sci. 175, 681–687 (2014).
Thomson, P. W. & Pflug, H. D. Pollen und sporen des mitteleuropäischen Tertiärs. Palaeontogr. Abt. B 94, 1–138 (1953).
Tekleva, M. V. & Maslova, N. P. A diverse pollen assemblage found on Friisicarpus infructescences (Platanaceae) from the Cenomanian–Turonian of Kazakhstan. Cretac. Res. 57, 131–141 (2016).
Takahashi, K. Upper Cretaceous and lower Paleogene microfloras of Japan. Rev. Palaeobot. Palynol. 5, 227–234 (1967).
Nadel, H., Peña, J. E. & Peña, J. E. Identity, behavior, and efficacy of nitidulid beetles (Coleoptera: Nitidulidae) pollinating commercial Annona species in Florida. Environ. Entomol. 23, 878–886 (1994).
Sakai, S. A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J. Plant Res. 115, 0161–0168 (2002).
Williams, G. & Adam, P. A review of rainforest pollination and plant–pollinator interactions with particular reference to Australian subtropical rainforests. Aust. Zool. 29, 177–212 (1994).
Klavins, S. D., Kellogg, D. W., Krings, M., Taylor, E. L. & Taylor, T. N. Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol. Ecol. Res. 7, 479–488 (2005).
Chadwick, C. E., Stevenson, D. W. & Norstog, K. J. The roles of Tranes lyterioides and T. sparsus Boh. (Col., Curculiodidae) in the pollination of Macrozamia communis (Zamiaceae). In The Biology, Structure, and Systematics of the Cycadales: Proc. CYCAD 90, the 2nd International Conference on Cycad Biology (eds. Stevenson, D. W. & Norstog, K. J.) 77–88 (Palm & Cycad Societies of Australia, 1993).
Post, D. C., Page, R. E. & Erickson, E. H. Honeybee (Apis mellifera L.) queen feces: source of a pheromone that repels worker bees. J. Chem. Ecol. 13, 583–591 (1987).
Weiss, H. B. & Boyd, W. M. Insect feculæ. J. N. Y. Entomol. Soc. 58, 154–168 (1950).
Lancucka-Srodoniowa, M. Tertiary coprolites imitating fruits of the Araliaceae. Acta Soc. Bot. Pol. 33, 469–473 (1964).
Scott, A. C. Trace fossils of plant–arthropod interactions. Short Courses Paleontol. 5, 197–223 (1992).
Weiss, H. B. & Boyd, W. M. Insect feculæ, II. J. N. Y. Entomol. Soc. 60, 25–30 (1952).
Parker, F. D., Tepedino, V. J. & Bohart, G. E. Notes on the biology of a common sunflower bee, Melissodes (Eumelissodes) agilis Cresson. J. N. Y. Entomol. Soc. 89, 43–52 (1981).
Sarzetti, L. C., Labandeira, C. C. & Genise, J. F. Reply to: Melittosphex (Hymenoptera: Melittosphecidae), a primitive bee and not a wasp. Palaeontology 52, 484 (2008).
Ohl, M. & Engel, M. S. Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera: Apoidea). Denisia 20, 687–700 (2007).
Pant, D. D. & Singh, R. Preliminary observations on insect–plant relationships in Allahabad plants of Cycas. Palms Cycads 32, 10–14 (1990).
Labandeira, C. C. The paleobiology of pollination and its precursors. Paleontol. Soc. Pap. 6, 233–270 (2000).
Procheş, Ş. & Johnson, S. D. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am. J. Bot. 96, 1722–1730 (2009).
Tarno, H. et al. Types of frass produced by the ambrosia beetle Platypus quercivorus during gallery construction, and host suitability of five tree species for the beetle. J. For. Res. 16, 68–75 (2011).
Friis, E. M., Pedersen, K. R. & Crane, P. R. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39, 226–239 (2000).
Nambudiri, E. M. V. & Binda, P. L. Dicotyledonous fruits associated with coprolites from the upper Cretaceous (Maastrichtian) Whitemud Formation, southern Saskatchewan, Canada. Rev. Palaeobot. Palynol. 59, 57–66 (1989).
Lupia, R., Herendeen, P. S. & Keller, J. A. A new fossil flower and associated coprolites: evidence for angiosperm–insect interactions in the Santonian (Late Cretaceous) of Georgia, U.S.A. Int. J. Plant Sci. 163, 675–686 (2002).
Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020).
Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol. 223, 83–99 (2019).
Liu, Z.-J., Huang, D., Cai, C. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).
Friis, E. M. & Pedersen, K. R. in Palynology: Principles and Applications (ed. Jansonius, J.) 409–426 (American Association of Stratigraphic Palynologists Foundation, 1996).
Schönenberger, J. & Friis, E. M. Fossil flowers of ericalean affinity from the Late Cretaceous of southern Sweden. Am. J. Bot. 88, 467–480 (2001).
The Angiosperm Phylogeny Group et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
Peris, D. et al. False blister beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).
Cai, C. et al. Beetle pollination of cycads in the Mesozoic. Curr. Biol. 28, 2806–2812 (2018).
Acknowledgements
C.C. was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant nos. XDB26000000 and XDB18000000) and the National Natural Science Foundation of China (grant no. 42072022). D.H. was funded by the National Natural Science Foundation of China (grant nos. 41925008 and 41688103) and the Second Tibetan Plateau Scientific Expedition and Research project (grant no. 2019QZKK0706).
Author information
Authors and Affiliations
Contributions
E.T. and C.C. conceived and designed the study. E.T. drafted the manuscript, with contributions from C.C. and D.H. L.L. identified the pollen grains and discussed their importance. Y.F. and Y.S. prepared the photographs and participated in the morphological studies. All authors participated in the finalization and review of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Plants thanks James Doyle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–3.
Rights and permissions
About this article
Cite this article
Tihelka, E., Li, L., Fu, Y. et al. Angiosperm pollinivory in a Cretaceous beetle. Nat. Plants 7, 445–451 (2021). https://doi.org/10.1038/s41477-021-00893-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41477-021-00893-2
This article is cited by
-
The impact of thermogenesis on the origin of insect pollination
Nature Plants (2024)
-
The earliest beetle with mouthparts specialized for feeding on nectar is a parasitoid of mid-Cretaceous Hymenoptera
BMC Ecology and Evolution (2021)
-
Was the kateretid beetle Pelretes really a Cretaceous angiosperm pollinator?
Nature Plants (2021)
-
Reply to: Pelretes vivificus was a pollinator of Cretaceous angiosperms
Nature Plants (2021)