Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Angiosperm pollinivory in a Cretaceous beetle

Matters Arising to this article was published on 23 December 2021


Despite the crucial importance of flower-visiting insects in modern ecosystems, there is little fossil evidence on the origins of angiosperm pollination. Most reports of pollination in the Mesozoic fossil record have been based on the co-occurrence of the purported pollinators with pollen grains and assumed morphological adaptations for vectoring pollen. Here, we describe an exceptionally preserved short-winged flower beetle (Cucujoidea: Kateretidae) from mid-Cretaceous amber, Pelretes vivificus gen. et sp. nov., associated with pollen aggregations and coprolites consisting mainly of pollen, providing direct evidence of pollen-feeding in a Cretaceous beetle and confirming that diverse beetle lineages visited early angiosperms in the Cretaceous. The exquisite preservation of our fossil permits the identification of the pollen grains as Tricolpopollenites (Asteridae or Rosidae), representing a record of flower beetle pollination of a group of derived angiosperms in the Mesozoic and suggesting that potentially diverse beetle lineages visited early angiosperms by the mid-Cretaceous.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photomicrographs of P. vivificus from mid-Cretaceous Burmese amber.
Fig. 2: Photomicrographs of Tricolpopollenites pollen and pollen-laden coprolites associated with P. vivificus.
Fig. 3: Ecological reconstruction of P. vivificus in the Burmese amber forest (~98.17 Ma).

Data availability

The fossils reported in this study are part of the publicly accessible collections of the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. Supplementary videos are available from MendeleyData:

Each amber piece in the collection of the Nanjing Institute of Geology and Palaeontology has an informal field number (not identical to the accession number provided when published and deposited permanently), indicating when the specimen was collected and by whom. On the basis of the present specimen’s field number (HUANG-HP-B-7567), its purchase can be traced to Prof. Chenyang Cai and Prof. Diying Huang, who acquired it in late 2016 from a Myanmar amber dealer whose family has been working in the amber business for many years. The local amber dealer and his workers mined the raw amber material (not cut, shaped or polished) legally with an excavation permit from a hill named Noije Bum (26° 15′ 0.00″ N, 96° 33′ 0.00″ E), near Tanai Township (26° 21′ 33.41″ N, 96° 43′ 11.88″ E). It was transported to Myitkyina for further processing such as trimming, shaping and polishing. From there, jewellery-grade specimens (in our case, the amber piece was sold as a small, light yellow and transparent pendant) were carried and sold legally in Ruili county in Dehong Prefecture at the border of China and Myanmar. We can confirm that the amber was mined in late 2016, long before the local armed conflict in the mining area.


  1. Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B 365, 2959–2971 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang, D.-Y. et al. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6, 23004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2, 408 (2019).

  4. Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl Acad. Sci. USA 116, 24707–24711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peris, D. et al. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23, 100913 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahrens, D., Schwarzer, J. & Vogler, A. P. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 281, 20141470 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon, 1979).

  9. Poinar, G., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).

    Google Scholar 

  10. Davies, E. H. Palynological Analysis and Age Assignments of Two Burmese Amber Sample Sets (Branta Biostratigraphy for Leeward Capital, 2001).

  11. Barrón, E. et al. Palynology of Aptian and upper Albian (lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain). Cretac. Res. 52, 292–312 (2015).

    Article  Google Scholar 

  12. Azar, D., Dejax, J. & Masure, E. Palynological analysis of amber-bearing clay from the lower Cretaceous of central Lebanon. Acta Geol. Sin. Engl. Ed. 85, 942–949 (2011).

    Article  Google Scholar 

  13. Barrón, E., Comas-Rengifo, M. J. & Elorza, L. Contribuciones al estudio palinológico del Cretácico Inferior de la Cuenca Vasco-Cantábrica: los afloramientos ambarigenos de Peñacerrada (España). Coloq. Paleontol. 52, 135–156 (2001).

    Google Scholar 

  14. Cai, C. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 20182175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mao, Y. Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).

    Article  Google Scholar 

  16. Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).

    Article  Google Scholar 

  17. Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 116, 11345–11350 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jelínek, J. & Cline, A. R. in Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles Morphology and Systematics (eds Leschen, R. A. B. et al.) Vol. 2 386–390 (Walter De Gruyter, 2010).

  19. Hisamatsu, S. A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea). Acta Entomol. Musei Natl Pragae 36, 551–585 (2011).

    Google Scholar 

  20. Peris, D. & Jelínek, J. Atypical short elytra in Cretaceous short-winged flower beetles (Coleoptera: Kateretidae). Palaeoentomology 2, 505–514 (2019).

    Article  Google Scholar 

  21. Peris, D. & Jelínek, J. Syninclusions of two new species of short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Kachin amber (Myanmar). Cretac. Res. 106, 104264 (2020).

    Article  Google Scholar 

  22. Poinar, G. & Brown, A. E. Furcalabratum burmanicum gen. et sp. nov., a short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Myanmar amber. Cretac. Res. 84, 240–244 (2018).

    Article  Google Scholar 

  23. Kirejtshuk, A. G. New species of nitidulid beetles (Coleoptera, Nitidulidae) of the Australian region. Entomol. Obozr. 65, 559–573 (1986).

    Google Scholar 

  24. Timerman, D., Greene, D. F., Ackerman, J. D., Kevan, P. G. & Nardone, E. Pollen aggregation in relation to pollination vector. Int. J. Plant Sci. 175, 681–687 (2014).

    Article  Google Scholar 

  25. Thomson, P. W. & Pflug, H. D. Pollen und sporen des mitteleuropäischen Tertiärs. Palaeontogr. Abt. B 94, 1–138 (1953).

    Google Scholar 

  26. Tekleva, M. V. & Maslova, N. P. A diverse pollen assemblage found on Friisicarpus infructescences (Platanaceae) from the Cenomanian–Turonian of Kazakhstan. Cretac. Res. 57, 131–141 (2016).

    Article  Google Scholar 

  27. Takahashi, K. Upper Cretaceous and lower Paleogene microfloras of Japan. Rev. Palaeobot. Palynol. 5, 227–234 (1967).

    Article  Google Scholar 

  28. Nadel, H., Peña, J. E. & Peña, J. E. Identity, behavior, and efficacy of nitidulid beetles (Coleoptera: Nitidulidae) pollinating commercial Annona species in Florida. Environ. Entomol. 23, 878–886 (1994).

    Article  Google Scholar 

  29. Sakai, S. A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J. Plant Res. 115, 0161–0168 (2002).

    Article  Google Scholar 

  30. Williams, G. & Adam, P. A review of rainforest pollination and plant–pollinator interactions with particular reference to Australian subtropical rainforests. Aust. Zool. 29, 177–212 (1994).

    Article  Google Scholar 

  31. Klavins, S. D., Kellogg, D. W., Krings, M., Taylor, E. L. & Taylor, T. N. Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol. Ecol. Res. 7, 479–488 (2005).

    Google Scholar 

  32. Chadwick, C. E., Stevenson, D. W. & Norstog, K. J. The roles of Tranes lyterioides and T. sparsus Boh. (Col., Curculiodidae) in the pollination of Macrozamia communis (Zamiaceae). In The Biology, Structure, and Systematics of the Cycadales: Proc. CYCAD 90, the 2nd International Conference on Cycad Biology (eds. Stevenson, D. W. & Norstog, K. J.) 77–88 (Palm & Cycad Societies of Australia, 1993).

  33. Post, D. C., Page, R. E. & Erickson, E. H. Honeybee (Apis mellifera L.) queen feces: source of a pheromone that repels worker bees. J. Chem. Ecol. 13, 583–591 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Weiss, H. B. & Boyd, W. M. Insect feculæ. J. N. Y. Entomol. Soc. 58, 154–168 (1950).

    Google Scholar 

  35. Lancucka-Srodoniowa, M. Tertiary coprolites imitating fruits of the Araliaceae. Acta Soc. Bot. Pol. 33, 469–473 (1964).

    Article  Google Scholar 

  36. Scott, A. C. Trace fossils of plant–arthropod interactions. Short Courses Paleontol. 5, 197–223 (1992).

    Article  Google Scholar 

  37. Weiss, H. B. & Boyd, W. M. Insect feculæ, II. J. N. Y. Entomol. Soc. 60, 25–30 (1952).

    Google Scholar 

  38. Parker, F. D., Tepedino, V. J. & Bohart, G. E. Notes on the biology of a common sunflower bee, Melissodes (Eumelissodes) agilis Cresson. J. N. Y. Entomol. Soc. 89, 43–52 (1981).

    Google Scholar 

  39. Sarzetti, L. C., Labandeira, C. C. & Genise, J. F. Reply to: Melittosphex (Hymenoptera: Melittosphecidae), a primitive bee and not a wasp. Palaeontology 52, 484 (2008).

    Google Scholar 

  40. Ohl, M. & Engel, M. S. Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera: Apoidea). Denisia 20, 687–700 (2007).

    Google Scholar 

  41. Pant, D. D. & Singh, R. Preliminary observations on insect–plant relationships in Allahabad plants of Cycas. Palms Cycads 32, 10–14 (1990).

    Google Scholar 

  42. Labandeira, C. C. The paleobiology of pollination and its precursors. Paleontol. Soc. Pap. 6, 233–270 (2000).

    Article  Google Scholar 

  43. Procheş, Ş. & Johnson, S. D. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am. J. Bot. 96, 1722–1730 (2009).

    Article  PubMed  CAS  Google Scholar 

  44. Tarno, H. et al. Types of frass produced by the ambrosia beetle Platypus quercivorus during gallery construction, and host suitability of five tree species for the beetle. J. For. Res. 16, 68–75 (2011).

    Article  Google Scholar 

  45. Friis, E. M., Pedersen, K. R. & Crane, P. R. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39, 226–239 (2000).

    Article  Google Scholar 

  46. Nambudiri, E. M. V. & Binda, P. L. Dicotyledonous fruits associated with coprolites from the upper Cretaceous (Maastrichtian) Whitemud Formation, southern Saskatchewan, Canada. Rev. Palaeobot. Palynol. 59, 57–66 (1989).

    Article  Google Scholar 

  47. Lupia, R., Herendeen, P. S. & Keller, J. A. A new fossil flower and associated coprolites: evidence for angiosperm–insect interactions in the Santonian (Late Cretaceous) of Georgia, U.S.A. Int. J. Plant Sci. 163, 675–686 (2002).

    Article  Google Scholar 

  48. Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol. 223, 83–99 (2019).

    Article  PubMed  Google Scholar 

  50. Liu, Z.-J., Huang, D., Cai, C. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Friis, E. M. & Pedersen, K. R. in Palynology: Principles and Applications (ed. Jansonius, J.) 409–426 (American Association of Stratigraphic Palynologists Foundation, 1996).

  52. Schönenberger, J. & Friis, E. M. Fossil flowers of ericalean affinity from the Late Cretaceous of southern Sweden. Am. J. Bot. 88, 467–480 (2001).

    Article  PubMed  Google Scholar 

  53. The Angiosperm Phylogeny Group et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

  54. Peris, D. et al. False blister beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Cai, C. et al. Beetle pollination of cycads in the Mesozoic. Curr. Biol. 28, 2806–2812 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references


C.C. was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant nos. XDB26000000 and XDB18000000) and the National Natural Science Foundation of China (grant no. 42072022). D.H. was funded by the National Natural Science Foundation of China (grant nos. 41925008 and 41688103) and the Second Tibetan Plateau Scientific Expedition and Research project (grant no. 2019QZKK0706).

Author information

Authors and Affiliations



E.T. and C.C. conceived and designed the study. E.T. drafted the manuscript, with contributions from C.C. and D.H. L.L. identified the pollen grains and discussed their importance. Y.F. and Y.S. prepared the photographs and participated in the morphological studies. All authors participated in the finalization and review of the manuscript.

Corresponding author

Correspondence to Chenyang Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks James Doyle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tihelka, E., Li, L., Fu, Y. et al. Angiosperm pollinivory in a Cretaceous beetle. Nat. Plants 7, 445–451 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing