Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stress-induced reactive oxygen species compartmentalization, perception and signalling

Abstract

Reactive oxygen species (ROS) are essential for life and are involved in the regulation of almost all biological processes. ROS production is critical for plant development, response to abiotic stresses and immune responses. Here, we focus on recent discoveries in ROS biology emphasizing abiotic and biotic stress responses. Recent advancements have resulted in the identification of one of the first sensors for extracellular ROS and highlighted waves of ROS production during stress signalling in Arabidopsis. Enzymes that produce ROS, including NADPH oxidases, exhibit precise regulation through diverse post-translational modifications. Discoveries highlight the importance of both amino- and carboxy-terminal regulation of NADPH oxidases through protein phosphorylation and cysteine oxidation. Here, we discuss advancements in ROS compartmentalization, systemic ROS waves, ROS sensing and post-translational modification of ROS-producing enzymes and identify areas where foundational gaps remain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biphasic ROS production and cell-to-cell communication.
Fig. 2: ROS perception by the HPCA1 receptor.
Fig. 3: Conservation of the NOX C terminus across plants and of critical residues in RBOHD and human NOX5.

Similar content being viewed by others

Data availability

The data used to generate Fig. 3a,b and Supplementary Fig. 1a,b, as well as detailed methodology and scripts, are available in the GitHub repository (https://github.com/DanielleMStevens/ROS_production_review). The NOX C-terminal alignments are available in wasabi (http://was.bi?id=gedS1F).

References

  1. Mhamdi, A. & Van Breusegem, F. Reactive oxygen species in plant development. Development 145, dev164376 (2018).

    Article  PubMed  CAS  Google Scholar 

  2. Mittler, R. ROS are good. Trends Plant Sci. 22, 11–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Dietz, K. J., Turkan, I. & Krieger-Liszkay, A. Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 171, 1541–1550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, S., Van Aken, O., Schwarzländer, M., Belt, K. & Millar, A. H. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol. 171, 1551–1559 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sandalio, L. M. & Romero-Puertas, M. C. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann. Bot. 116, 475–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, H., Ullah, F., Zhou, D. X., Yi, M. & Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10, 800 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao, C., Zhang, H., Song, C., Zhu, J.-K. & Shabala, S. Mechanisms of plant responses and adaptation to soil salinity. Innovation 1, 100017 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. El-Shetehy, M. et al. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants. Plant Signal. Behav. 10, e998544 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schmidt, R., Kunkowska, A. B. & Schippers, J. H. Role of reactive oxygen species during cell expansion in leaves. Plant Physiol. 172, 2098–2106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaya, H. et al. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26, 1069–1080 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeda, S. et al. Local positive feedback regulation determines cell shape in root hair cells. Science 319, 1241–1244 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Mangano, S. et al. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl Acad. Sci. USA 114, 5289–5294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, Y., Rubio, M. C., Alassimone, J. & Geldner, N. A mechanism for localized lignin deposition in the endodermis. Cell 153, 402–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Cheval, C. et al. Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proc. Natl Acad. Sci. USA 117, 9621–9629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, J. P. et al. Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca. New Phytol. 221, 1935–1949 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Smirnoff, N. & Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 221, 1197–1214 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Waszczak, C., Carmody, M. & Kangasjärvi, J. Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 69, 209–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Kadota, Y., Shirasu, K. & Zipfel, C. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56, 1472–1480 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Vaahtera, L., Brosché, M., Wrzaczek, M. & Kangasjärvi, J. Specificity in ROS signaling and transcript signatures. Antioxid. Redox Signal. 21, 1422–1441 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Willems et al. The ROS wheel: refining ROS transcriptional footprints. Plant Physiol. 171, 1720–1733 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mielecki, J., Gawroński, P. & Karpiński, S. Retrograde signaling: understanding the communication between organelles. Int. J. Mol. Sci. 21, 6173 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  22. Ng, S. et al. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25, 3450–3471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shapiguzov, A. et al. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife 8, e43284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chan, K. X., Phua, S. Y., Crisp, P., McQuinn, R. & Pogson, B. J. Learning the languages of the chloroplast: retrograde signaling and beyond. Annu. Rev. Plant Biol. 67, 25–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Op den Camp, R. G. et al. Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15, 2320–2332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daudi, A. et al. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24, 275–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujita, S. et al. SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J. 39, e103894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lassig, R., Gutermuth, T., Bey, T. D., Konrad, K. R. & Romeis, T. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 78, 94–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Müller, K., Carstens, A. C., Linkies, A., Torres, M. A. & Leubner-Metzger, G. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol. 184, 885–897 (2009).

    Article  PubMed  CAS  Google Scholar 

  30. Lolle, S., Stevens, D. & Coaker, G. Plant NLR-triggered immunity: from receptor activation to downstream signaling. Curr. Opin. Immunol. 62, 99–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Brien, J. A. et al. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 158, 2013–2027 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang, C. et al. Pipecolic acid confers systemic immunity by regulating free radicals. Sci. Adv. 4, eaar4509 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li, X. et al. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. Front. Plant Sci. 6, 463 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wong, H. L. et al. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19, 4022–4034 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian, S. et al. Plant aquaporin AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol. 171, 1635–1650 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bienert, G. P. & Chaumont, F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 1840, 1596–1604 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Grondin, A. et al. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27, 1945–1954 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Möller, M. N., Cuevasanta, E., Orrico, F., Lopez, A. C., Thomson, L. & Denicola, A.Diffusion and transport of reactive species across cell membranes. Adv. Exp. Med. Biol. 1127, 3–19 (2019).

    Article  PubMed  CAS  Google Scholar 

  39. Lynch, R. E. & Fridovich, I. Permeation of the erythrocyte stroma by superoxide radical. J. Biol. Chem. 253, 4697–4699 (1978).

    Article  CAS  PubMed  Google Scholar 

  40. Reithmeier, R. A. et al. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim. Biophys. Acta 1858, 1507–1532 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. De Rezende, F. F. et al. Integrin α7β1 is a redox-regulated target of hydrogen peroxide in vascular smooth muscle cell adhesion. Free Radic. Biol. Med. 53, 521–531 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. Noctor, G. & Foyer, C. H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol. 171, 1581–1592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bononi, A. et al. Mitochondria-associated membranes (MAMs) as hotspot Ca2+ signaling units. Adv. Exp. Med. Biol. 740, 411–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Hancock, J. T. Considerations of the importance of redox state for reactive nitrogen species action. J. Exp. Bot. 70, 4323–4331 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Thordal-Christensen, H., Zhang, Z., Wei, Y. & Collinge, D. B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J. 11, 1187–1194 (1997).

    Article  CAS  Google Scholar 

  46. Dikalov, S. I. & Harrison, D. G. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal. 20, 372–382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kauffman, M. E. et al. MitoSOX-based flow cytometry for detecting mitochondrial ROS. React. Oxyg. Species (Apex) 2, 361–370 (2016).

    Google Scholar 

  48. Fichman, Y., Miller, G. & Mittler, R. Whole-plant live imaging of reactive oxygen species. Mol. Plant 12, 1203–1210 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Nietzel, T. et al. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis. New Phytol. 221, 1649–1664 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Fichman, Y. & Mittler, R. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? Plant J. 102, 887–896 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Gilroy, S. et al. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171, 1606–1615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, F. et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578, 577–581 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Cheval, C. & Faulkner, C. Plasmodesmal regulation during plant–pathogen interactions. New Phytol. 217, 62–67 (2018).

    Article  PubMed  Google Scholar 

  54. Mittler, R. & Blumwald, E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27, 64–70 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zandalinas, S. I., Fichman, Y. & Mittler, R. Vascular bundles mediate systemic reactive oxygen signaling during light stress. Plant Cell 32, 3425–3435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, Y. C. et al. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc. Natl Acad. Sci. USA 115, E4920–E4929 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Návarová, H., Bernsdorff, F., Döring, A. C. & Zeier, J. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24, 5123–5141 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wu, J. et al. Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res. 25, 621–633 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gilroy, S. et al. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 19, 623–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature https://doi.org/10.1038/s41586-021-03316-6 (2021).

  61. McConnell, E. W. et al. Proteome-wide analysis of cysteine reactivity during effector-triggered immunity. Plant Physiol. 179, 1248–1264 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Ngou, B. P. M., Ahn, H.-K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature https://doi.org/10.1038/s41586-021-03315-7 (2021).

  63. Liu, Y. et al. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 51, 941–954 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Rossi, F. R. et al. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J. 92, 761–773 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Zurbriggen, M. D. et al. Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant J. 60, 962–973 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Moreau, M. et al. The Arabidopsis oligopeptidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. Plant J. 76, 603–614 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Westlake, T. J., Ricci, W. A., Popescu, G. V. & Popescu, S. C. Dimerization and thiol sensitivity of the salicylic acid binding thimet oligopeptidases TOP1 and TOP2 define their functions in redox-sensitive cellular pathways. Front. Plant Sci. 6, 327 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kimura, S., Waszczak, C., Hunter, K. & Wrzaczek, M. Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling. Plant Cell 29, 638–654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Akter, S. et al. Cysteines under ROS attack in plants: a proteomics view. J. Exp. Bot. 66, 2935–2944 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Waszczak, C. et al. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J. Exp. Bot. 66, 2923–2934 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Jacques, S. et al. Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress. Mol. Cell Proteom. 14, 1217–1229 (2015).

    Article  CAS  Google Scholar 

  72. Jacques, S., Ghesquière, B., Van Breusegem, F. & Gevaert, K. Plant proteins under oxidative attack. Proteomics 13, 932–940 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Felle, H. H. pH: signal and messenger in plant cells. Plant Biol. 3, 577–591 (2001).

    Article  CAS  Google Scholar 

  74. Geilfus, C. M. The pH of the apoplast: dynamic factor with functional impact under stress. Mol. Plant 10, 1371–1386 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Wojtkowiak, J. W., Verduzco, D., Schramm, K. J. & Gillies, R. J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm. 8, 2032–2038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Toledano, M. B. et al. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78, 897–909 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Gaudu, P., Moon, N. & Weiss, B. Regulation of the soxRS oxidative stress regulon reversible oxidation of the Fe–S centers of SoxR in vivo. J. Biol. Chem. 272, 5082–5086 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Delaunay, A., Pflieger, D., Barrault, M. B., Vinh, J. & Toledano, M. B. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Miao, Y. et al. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18, 2749–2766 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ding, Y. et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173, 1454–1467 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Dong, X. NPR1, all things considered. Curr. Opin. Plant Biol. 7, 547–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Mou, Z., Fan, W. & Dong, X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Tada, Y. et al. Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952–956 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Kinkema, M., Fan, W. & Dong, X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12, 2339–2350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zaffagnini, M., Fermani, S., Costa, A., Lemaire, S. D. & Trost, P. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. Front. Plant Sci. 4, 450 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hancock, J. T. et al. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol. Biochem. 43, 828–835 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Schneider, M., Knuesting, J., Birkholz, O., Heinisch, J. J. & Scheibe, R. Cytosolic GAPDH as a redox-dependent regulator of energy metabolism. BMC Plant Biol. 18, 184 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Uraji, M. et al. Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 159, 450–460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bourdais, G. et al. Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet. 11, e1005373 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kimura, S. et al. CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell 32, 1063–1080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vaattovaara, A. et al. Mechanistic insights into the evolution of DUF26-containing proteins in land plants. Commun. Biol. 2, 56 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tian, W. et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131–135 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Byrne, D. P. et al. Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Sci. Signal. 13, eaax2713 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Behring, J. B. et al. Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation. Sci. Signal. 13, eaay7315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, T., Zhu, M., Song, W. Y., Harmon, A. C. & Chen, S. Oxidation and phosphorylation of MAP kinase 4 cause protein aggregation. Biochim. Biophys. Acta 1854, 156–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Kovtun, Y., Chiu, W. L., Tena, G. & Sheen, J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl Acad. Sci. USA 97, 2940–2945 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xie, G., Sasaki, K., Imai, R. & Xie, D. A redox-sensitive cysteine residue regulates the kinase activities of OsMPK3 and OsMPK6 in vitro. Plant Sci. 227, 69–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Ueoka-Nakanishi, H. et al. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes. FEBS J. 280, 3220–3231 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Kaya, H. et al. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. Plant J. 98, 291–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Pandey, D., Gratton, J. P., Rafikov, R., Black, S. M. & Fulton, D. J. Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5. Mol. Pharmacol. 80, 407–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Streller, S., Krömer, S. & Wingsle, G. Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L. Plant Cell Physiol. 35, 859–867 (1994).

    CAS  PubMed  Google Scholar 

  102. Alscher, R. G., Erturk, N. & Heath, L. S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331–1341 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Winterbourn, C. C., Parsons-Mair, H. N., Gebicki, S., Gebicki, J. M. & Davies, M. J. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem. J. 381, 241–248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, Y. et al. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21, 2357–2377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu, C. H. et al. NADPH oxidases: the vital performers and center hubs during plant growth and signaling. Cells 9, 437 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  106. Morales, J., Kadota, Y., Zipfel, C., Molina, A. & Torres, M. A. The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. J. Exp. Bot. 67, 1663–1676 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Chen, D. et al. Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat. Commun. 8, 2265 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kadota, Y. et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54, 43–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Li, L. et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Dubiella, U. et al. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc. Natl Acad. Sci. USA 110, 8744–8749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gao, X. et al. Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases. PLoS Pathog. 9, e1003127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, M. et al. The MAP4 kinase SIK1 ensures robust extracellular ROS burst and antibacterial immunity in plants. Cell Host Microbe 24, 379–391 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kadota, Y. et al. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol. 221, 2160–2175 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Boisson-Dernier, A., Franck, C. M., Lituiev, D. S. & Grossniklaus, U. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc. Natl Acad. Sci. USA 112, 12211–12216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fernando, V. et al. S-nitrosylation: an emerging paradigm of redox signaling. Antioxid. (Basel) 8, 404 (2019).

    Article  CAS  Google Scholar 

  116. Heinrich, T. A. et al. Biological nitric oxide signalling: chemistry and terminology. Br. J. Pharmacol. 169, 1417–1429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Astier, J., Gross, I. & Durner, J. Nitric oxide production in plants: an update. J. Exp. Bot. 69, 3401–3411 (2017).

    Article  CAS  Google Scholar 

  118. Gupta, K. J. et al. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytol. 225, 1828–1834 (2020).

    Article  PubMed  Google Scholar 

  119. Lindermayr, C. & Durner, J. S-nitrosylation in plants: pattern and function. J. Proteom. 73, 1–9 (2009).

    Article  CAS  Google Scholar 

  120. Yun, B. W. et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478, 264–268 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Beaumel, S. et al. Down-regulation of NOX2 activity in phagocytes mediated by ATM-kinase dependent phosphorylation. Free Radic. Biol. Med. 113, 1–15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Qian, J. et al. Nitric oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation. Free Radic. Biol. Med. 52, 1806–1819 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shen, J. et al. Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32, 1000–1017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee, D. et al. Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat. Commun. 11, 1838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Mithoe, S. C. & Menke, F. L. Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Curr. Opin. Plant Biol. 45, 162–170 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Lu, D. et al. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332, 1439–1442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ma, X. et al. Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature 581, 199–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liao, D. et al. Arabidopsis E3 ubiquitin ligase PLANT U-BOX13 (PUB13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (LYK5) protein abundance. New Phytol. 214, 1646–1656 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Li, Q.-Y., Li, P., Myint Phyu Sin Htwe, N., Shangguan, K.-K. & Liang, Y. Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis. J. Zhejiang Univ. Sci. B 20, 713–727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.C. and G.C. are supported by a grant from the National Institutes of Health (NIH 1R35GM136402). B.C. is partially supported by the University of California, Davis Dean’s Distinguished Graduate Fellowship. M.W. acknowledges funding from the Academy of Finland (Decision 323917). S.K. is supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant 20K05831).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing the manuscript and conceiving the ideas presented. G.C. and M.W. led the structure and ideas in the manuscript and finalized the writing. S.K. generated Fig. 1. B.C. generated Fig. 2 and portions of Fig. 3. D.M.S. generated Fig. 3a,b and Supplementary Fig. 1a,b. M.C. generated the models in Fig. 3 and Supplementary Fig. 1.

Corresponding authors

Correspondence to Michael Wrzaczek or Gitta Coaker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks John Hancock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, methods and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, B., Citterico, M., Kimura, S. et al. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants 7, 403–412 (2021). https://doi.org/10.1038/s41477-021-00887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00887-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing