Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Implications of size-dependent tree mortality for tropical forest carbon dynamics

Abstract

Tropical forests are mitigating the ongoing climate crisis by absorbing more atmospheric carbon than they emit. However, widespread increases in tree mortality rates are decreasing the ability of tropical forests to assimilate and store carbon. A relatively small number of large trees dominate the contributions of these forests to the global carbon budget, yet we know remarkably little about how these large trees die. Here, we propose a cohesive and empirically informed framework for understanding and investigating size-dependent drivers of tree mortality. This theory-based framework enables us to posit that abiotic drivers of tree mortality—particularly drought, wind and lightning—regulate tropical forest carbon cycling via their disproportionate effects on large trees. As global change is predicted to increase the pressure from abiotic drivers, the associated deaths of large trees could rapidly and lastingly reduce tropical forest biomass stocks. Focused investigations of large tree death are needed to understand how shifting drivers of mortality are restructuring carbon cycling in tropical forests.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Size-dependent contributions of mortality to carbon losses.
Fig. 2: Hypothesized trends of size-dependent tree mortality.
Fig. 3: Hypothetical consequences of increases in major drivers.

References

  1. 1.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864 (2018).

    Article  Google Scholar 

  5. 5.

    Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).

    Article  Google Scholar 

  10. 10.

    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Forrester, D. I. Does individual-tree biomass growth increase continuously with tree size? For. Ecol. Manag. 481, 118717 (2021).

    Article  Google Scholar 

  13. 13.

    Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).

    Article  Google Scholar 

  14. 14.

    Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).

    Article  Google Scholar 

  15. 15.

    McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).

    Article  Google Scholar 

  16. 16.

    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).

    Article  Google Scholar 

  17. 17.

    Parlato, B., Gora, E. M. & Yanoviak, S. P. Lightning damage facilitates beetle colonization of tropical trees. Ann. Entomol. Soc. Am. 113, 447–451 (2020).

    Google Scholar 

  18. 18.

    Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).

    Article  Google Scholar 

  19. 19.

    Gale, N. & Hall, P. Factors determining the modes of tree death in three Bornean rain forests. J. Veg. Sci. 12, 337–348 (2001).

    Article  Google Scholar 

  20. 20.

    Fontes, C. G., Chambers, J. Q. & Higuchi, N. Revealing the causes and temporal distribution of tree mortality in Central Amazonia. For. Ecol. Manag. 424, 177–183 (2018).

    Article  Google Scholar 

  21. 21.

    de Toledo, J. J., Magnusson, W. E. & Castilho, C. V. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. J. Veg. Sci. 24, 651–663 (2013).

    Article  Google Scholar 

  22. 22.

    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Yanoviak, S. P. et al. Lightning is a major cause of large tropical tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Rifai, S. W. et al. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecol. Appl. 26, 2225–2237 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

    Article  Google Scholar 

  26. 26.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Article  Google Scholar 

  27. 27.

    Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Roberts, J., Osvaldo, M. R. C. & De Aguiar, L. F. Stomatal and boundary-layer conductances in an Amazonian terra firme rain forest. J. Appl. Ecol. 27, 336–353 (1990).

    Article  Google Scholar 

  29. 29.

    Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).

  31. 31.

    Mencuccini, M. et al. Size-mediated ageing reduces vigour in trees. Ecol. Lett. 8, 1183–1190 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Bartholomew, D. C. et al. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant Cell Environ. 43, 2380–2393 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Fauset, S. et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    van der Meer, P. J. & Bongers, F. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J. Ecol. 84, 19–29 (1996).

    Article  Google Scholar 

  41. 41.

    Parker, G. G. in Forest canopies (eds Lowman, M. D. & Nadkarni, N. M.) 73–106 (Academic Press, 1995).

  42. 42.

    Terborgh, J., Huanca Nuñez, N., Feeley, K. & Beck, H. Gaps present a trade-off between dispersal and establishment that nourishes species diversity. Ecology 101, e02996 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Ribeiro, G. H. P. M. et al. Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. For. Ecol. Manag. 380, 1–10 (2016).

    Article  Google Scholar 

  44. 44.

    Peterson, C. J. et al. Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry 92, 444–459 (2019).

    Article  Google Scholar 

  45. 45.

    Uriarte, M., Thompson, J. & Zimmerman, J. K. Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms. Nat. Commun. 10, 1362 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Silvério, D. V. et al. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation. J. Ecol. 107, 656–667 (2019).

    Article  Google Scholar 

  47. 47.

    van Wilgen, B. W., Biggs, H. C., Mare, N. & O’Regan, S. P. A fire history of the savanna ecosystems in the Kruger National Park, South Africa, between 1941 and 1996. S. Afr. J. Sci. 96, 167–178 (2000).

    Google Scholar 

  48. 48.

    Tutin, C. E. G., White, L. J. T. & Mackanga-Missandzou, A. Lightning strike burns large forest tree in the Lope Reserve, Gabon. Glob. Ecol. Biogeog. Lett. 5, 36–41 (1996).

    Article  Google Scholar 

  49. 49.

    Magnusson, W. E., Lima, A. P. & de Lima, O. Group lightning mortality of trees in a Neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).

    Article  Google Scholar 

  50. 50.

    Anderson, J. A. R. Observations on climatic damage in peat swamp forest in Sarawak. Commonw. Forestry Rev. 43, 145–158 (1964).

    Google Scholar 

  51. 51.

    Gora, E. M., Burchfield, J. C., Muller-Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning-caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).

    Article  Google Scholar 

  52. 52.

    Gora, E. M. et al. A mechanistic and empirically-supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).

    Article  Google Scholar 

  53. 53.

    Alencar, A., Nepstad, D. & Diaz, M. C. V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact. 10, 1–17 (2009).

    Article  Google Scholar 

  54. 54.

    Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: A pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).

    CAS  Article  Google Scholar 

  55. 55.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Kauffman, J. B. & Uhl, C. in Fire in the Tropical Biota. Ecological Studies (Analysis and Synthesis) Vol. 84 (ed. Goldammer, J. G.) (Springer, 1990).

  57. 57.

    Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).

    Article  CAS  Google Scholar 

  58. 58.

    Nepstad, D. C. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).

    CAS  Article  Google Scholar 

  59. 59.

    Ray, D., Nepstad, D. & Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664–1678 (2005).

    Article  Google Scholar 

  60. 60.

    Brando, P. M. et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob. Change Biol. 18, 630–641 (2012).

    Article  Google Scholar 

  61. 61.

    Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).

    Article  Google Scholar 

  62. 62.

    Liebhold, A. M., MacDonald, W. L., Bergdahl, D. & Mastro, V. C. Invasion by Exotic Forest Pests: A Threat to Forest Ecosystems Forest Science Monographs 30 (Society of American Foresters, 1995).

  63. 63.

    McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).

  64. 64.

    Gilbert, G. S. & Hubbell, S. P. Plant diseases and the conservation of tropical forests. BioScience 46, 98–106 (1996).

    Article  Google Scholar 

  65. 65.

    Liu, X. et al. Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129, 457–465 (2020).

    Article  Google Scholar 

  66. 66.

    Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Bell, T., Freckleton, R. P. & Lewis, O. T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9, 569–574 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Peters, H. A. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol. Lett. 6, 757–765 (2003).

    Article  Google Scholar 

  69. 69.

    Gilbert, G. S., Foster, R. B. & Hubbell, S. P. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98, 100–108 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

    Article  Google Scholar 

  71. 71.

    Suresh, H. S., Dattaraja, H. S. & Sukumar, R. Relationship between annual rainfall and tree mortality in a tropical dry forest: results of a 19-year study at Mudumalai, southern India. For. Ecol. Manag. 259, 762–769 (2010).

    Article  Google Scholar 

  72. 72.

    Forrister, D. L., Endara, M.-J., Younkin, G. C., Coley, P. D. & Kursar, T. A. Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363, 1213 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).

    Article  Google Scholar 

  74. 74.

    Wing, L. D. & Buss, I. O. Elephants and forests. Wildl. Monogr. 19, 3–92 (1970).

  75. 75.

    Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019).

    CAS  Article  Google Scholar 

  76. 76.

    Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 7, 1075–1084 (2018).

    Article  Google Scholar 

  78. 78.

    Montgomery, R. A. & Chazdon, R. L. Forest structure, canopy architecture, and light transmittance in old-growth and secondgrowth tropical rain forests. Ecology 82, 2707–2718 (2001).

    Article  Google Scholar 

  79. 79.

    Kobe, R. K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80, 226–233 (1997).

    Article  Google Scholar 

  80. 80.

    Waring, B. G. & Powers, J. S. Overlooking what is underground: root:shoot ratios and coarse root allometric equations for tropical forests. For. Ecol. Manag. 385, 10–15 (2017).

    Article  Google Scholar 

  81. 81.

    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Casper, B. B. & Jackson, R. B. Plant competition underground. Annu. Rev. Ecol. Syst. 28, 545–570 (1997).

    Article  Google Scholar 

  83. 83.

    Coomes, D. A., Duncan, R. P., Allen, R. B. & Truscott, J. Disturbances prevent stem size–density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980–989 (2003).

    Article  Google Scholar 

  84. 84.

    Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).

    Article  Google Scholar 

  85. 85.

    Rozendaal, D. M. A. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Rodríguez-Ronderos, M. E., Bohrer, G., Sanchez-Azofeifa, A., Powers, J. S. & Schnitzer, S. A. Contribution of lianas to plant area index and canopy structure in a Panamanian forest. Ecology 97, 3271–3277 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Schnitzer, S. A., Kuzee, M. E. & Bongers, F. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J. Ecol. 93, 1115–1125 (2005).

    Article  Google Scholar 

  88. 88.

    Putz, F. E. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65, 1713–1724 (1984).

    Article  Google Scholar 

  89. 89.

    van der Heijden, G. M. F., Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl Acad. Sci. USA 112, 13267–13271 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  90. 90.

    Visser, M. D. et al. Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J. Ecol. 106, 781–794 (2018).

    CAS  Article  Google Scholar 

  91. 91.

    Schnitzer, S. A. & Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17, 223–230 (2002).

    Article  Google Scholar 

  92. 92.

    García León, M. M., Martínez Izquierdo, L., Mello, F. N. A., Powers, J. S. & Schnitzer, S. A. Lianas reduce community-level canopy tree reproduction in a Panamanian forest. J. Ecol. 106, 737–745 (2018).

    Article  CAS  Google Scholar 

  93. 93.

    Reis, S. M. et al. Causes and consequences of liana infestation in Southern Amazonia. J. Ecol. 108, 2184–2197 (2020).

    Article  Google Scholar 

  94. 94.

    Sheil, D., Salim, A., Chave, J., Vanclay, J. & Hawthorne, W. D. Illumination–size relationships of 109 coexisting tropical forest tree species. J. Ecol. 94, 494–507 (2006).

    Article  Google Scholar 

  95. 95.

    Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395 (2007).

    CAS  Article  Google Scholar 

  96. 96.

    Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).

    CAS  Article  Google Scholar 

  98. 98.

    Hubau, W. et al. The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 391, 135–136 (1998).

    CAS  Article  Google Scholar 

  100. 100.

    Poorter, L. & Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88, 1000–1011 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Arellano, G., Medina, N. G., Tan, S., Mohamad, M. & Davies, S. J. Crown damage and the mortality of tropical trees. New Phytol. 221, 169–179 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Zhang, Y.-J. et al. Size‐dependent mortality in a Neotropical savanna tree: the role of height‐related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ. 32, 1456–1466 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).

    CAS  Article  Google Scholar 

  105. 105.

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    CAS  Article  Google Scholar 

  106. 106.

    Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).

    Article  Google Scholar 

  107. 107.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).

  108. 108.

    Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).

    Article  Google Scholar 

  109. 109.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).

    Article  Google Scholar 

  112. 112.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Banin, L. et al. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21, 1179–1190 (2012).

    Article  Google Scholar 

  114. 114.

    Brando, P. et al. Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia 150, 181–189 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Lugo, A. E. & Scatena, F. N. Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica 28, 585–599 (1996).

    Article  Google Scholar 

  116. 116.

    Feeley, K. J., Bravo-Avila., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).

    CAS  Article  Google Scholar 

  117. 117.

    Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth–lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Bugmann, H. et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019).

    Article  Google Scholar 

  119. 119.

    Arellano, G., Zuleta, D. & Davies, S. J. Tree death and damage: A standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).

    Article  Google Scholar 

  120. 120.

    Chan, K.-J., Phillips, O. L., Monteagudo, A., Torres-Lezama, A. & Vásquez Martínez, R. How do trees die? Mode of death in northern Amazonia. J. Veg. Sci. 20, 260–268 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Muller-Landau and her laboratory, and S. Schnitzer, S. Davies, W. Baker, C. Signori Müller, E. Luna-Diez and E. Leigh for their comments. This project was instigated by an organized oral session at the annual meeting of the Ecological Society of America in 2019. E.M.G. was funded by the Earl S. Tupper Fellowship and NSF grant DEB-1655346. A.E.-M. was funded by the ERC award TreeMort 758873. A.E.-M. thanks the GEES women writing sessions during which part of the manuscript was written. This is paper number 49 of the Birmingham Institute of Forest Research.

Author information

Affiliations

Authors

Contributions

Both authors conceived the study, reviewed and interpreted the literature, analysed the data, wrote the manuscript and approved the final version.

Corresponding authors

Correspondence to Evan M. Gora or Adriane Esquivel-Muelbert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Hans Beeckman, Michael Ryan and Kristina Anderson-Teixeira for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gora, E.M., Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021). https://doi.org/10.1038/s41477-021-00879-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing