Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Technologies to deliver food and climate security through agriculture

Abstract

Agriculture is a major contributor to environmental degradation and climate change. At the same time, a growing human population with changing dietary preferences is driving ever increasing demand for food. The need for urgent reform of agriculture is widely recognized and has resulted in a number of ambitious plans. However, there is credible evidence to suggest that these are unlikely to meet the twin objectives of keeping the increase in global temperature within the target of 2.0 °C above preindustrial levels set out in the Paris Agreement and delivering global food security. Here, we discuss a series of technological options to bring about change in agriculture for delivering food security and providing multiple routes to the removal of CO2 from the atmosphere. These technologies include the use of silicate amendment of soils to sequester atmospheric CO2, agronomy technologies to increase soil organic carbon, and high-yielding resource-efficient crops to deliver increased agricultural yield, thus freeing land that is less suited for intensive cropping for land use practices that will further increase carbon storage. Such alternatives include less intensive regenerative agriculture, afforestation and bioenergy crops coupled with carbon capture and storage technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Options for food security and climate change mitigation using soil and crop innovations and agricultural land reclamation.

References

  1. 1.

    Shukla, P. R. et al. (eds) IPCC Special Report on Climate Change and Land (IPCC, 2019).

  2. 2.

    FAO, IFAD, UNICEF, WFP and WHO. The State of Food Security and Nutrition in the World 2017 (FAO, 2017).

  3. 3.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  PubMed  Google Scholar 

  4. 4.

    Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet Comm. 393, 447–492 (2019).

    Google Scholar 

  5. 5.

    Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 370, 705–708 (2020).

    CAS  PubMed  Google Scholar 

  6. 6.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper 12-03 (FAO, 2012).

  7. 7.

    Schmitz, C. et al. Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agric. Econ. 45, 69–84 (2014).

    Google Scholar 

  8. 8.

    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    PubMed  Google Scholar 

  9. 9.

    Mueller, N. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS  PubMed  Google Scholar 

  10. 10.

    The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction (FAO, 2019).

  11. 11.

    Long, S. P., Marshall-Colon, A. & Zhu, X. G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Horton, P. We need radical change in how we produce and consume food. Food Security 9, 1323–1327 (2017).

    Google Scholar 

  13. 13.

    Horton, P. et al. An agenda for integrated system-wide interdisciplinary agri-food research. Food Security 9, 195–210 (2017).

    Google Scholar 

  14. 14.

    Bernacchi, C. J., Hollinger, S. E. & Meyers, T. The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Glob. Change Biol. 11, 1867–1872 (2005).

    Google Scholar 

  15. 15.

    Cabral, O. M. R. et al. The sustainability of a sugarcane plantation in Brazil assessed by the eddy covariance fluxes of greenhouse gases. Agric. Meteorol. 282, 107864 (2020).

    Google Scholar 

  16. 16.

    Long, S. P. et al. in Bioenergy & Sustainability: Bridging the Gaps (eds Souza, G. M. et al.) 302–347 (SCOPE, 2015).

  17. 17.

    Harnessing Plants Initiative Salk Institute for Biological Science https://www.salk.edu/harnessing-plants-initiative (2020).

  18. 18.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    CAS  PubMed  Google Scholar 

  19. 19.

    Rumpel, C. et al. Put more carbon in soils to meet Paris climate pledges. Nature 564, 32–34 (2018).

    CAS  PubMed  Google Scholar 

  20. 20.

    Recarbonization of Global Soils (FAO, 2019); http://www.fao.org/3/ca6522en/CA6522EN.pdfhttp://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/1237415/

  21. 21.

    Kuiper, I., Lagendijk, E. L., Bloemberg, G. V. & Lugtenberg, B. J. J. Rhizoremediation: a beneficial plant–microbe interaction. Mol. Plant Microbe Interact. 17, 6–15 (2004).

    CAS  PubMed  Google Scholar 

  22. 22.

    Exposito, R. G., de Bruijn, I., Postma, J. & Raaijmakers, J. M. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front. Microbiol. 8, 12 (2017).

    Google Scholar 

  23. 23.

    Oldroyd, G. E. D. & Leyser, O. A plant’s diet, surviving in a variable nutrient environment. Science 368, eaba0196 (2020).

    CAS  PubMed  Google Scholar 

  24. 24.

    Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).

    Google Scholar 

  25. 25.

    Kantola, I. B. et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett. 13, 20160714 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Beerling, D. J. et al. Farming with crops and rocks to address climate, food and soil security. Nat. Plants 4, 138–147 (2018).

    PubMed  Google Scholar 

  27. 27.

    Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020).

    CAS  PubMed  Google Scholar 

  28. 28.

    Renforth, P. & Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55, 636–674 (2017).

    Google Scholar 

  29. 29.

    Haque, F., Santos, R. M. & Chiang, Y. W. Optimizing inorganic carbon sequestration and crop yield with wollastonite soil amendment in a microplot study. Front. Plant Sci. 11, 1012 (2020).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Haque, F. et al. Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth. ACS Omega 4, 1425–1433 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Haque, F. et al. CO2 sequestration by wollastonite-amended agricultural soils—an Ontario field study. Int. J. Greenh. Gas Control 97, 103017 (2020).

    CAS  Google Scholar 

  32. 32.

    Kelland, M. E. et al. Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil. Glob. Change Biol. 26, 3658–3676 (2020).

    Google Scholar 

  33. 33.

    Lehmann, J. & Possinger, A. Atmospheric CO2 removed by rock weathering. Nature 583, 204–205 (2020).

    CAS  PubMed  Google Scholar 

  34. 34.

    Murchie, E. H., Pinto, M. & Horton, P. Agriculture and the new challenges for photosynthesis research. N. Phytol. 181, 532–552 (2009).

    CAS  Google Scholar 

  35. 35.

    Zhu, X. G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016).

    CAS  PubMed  Google Scholar 

  37. 37.

    South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363, eaat9007 (2019).

    Google Scholar 

  38. 38.

    Lopez-Calcagno, P. E. et al. Stimulating photosynthetic processes increases productivity and water use efficiency in the field. Nat. Plants 6, 1054–1063 (2020).

    CAS  PubMed  Google Scholar 

  39. 39.

    Yoon, D.-K. et al. Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field. Nat. Food 1, 134–139 (2020).

    Google Scholar 

  40. 40.

    Kohler, I. H. et al. Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. J. Exp. Bot. 68, 715–726 (2017).

    PubMed  Google Scholar 

  41. 41.

    Ort, D. R. & Long, S. P. Limits on yields in the corn belt. Science 344, 483–484 (2014).

    Google Scholar 

  42. 42.

    Leakey, A. D. B. et al. Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annu. Rev. Plant Biol. 70, 781–808 (2019).

    CAS  PubMed  Google Scholar 

  43. 43.

    Glowacka, K. et al. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 9, 868 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Dunn, J. et al. Reduced stomatal density in bread wheat leads to increased water-use efficiency. J. Exp. Bot. 70, 4737–4748 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    McAusland, L. et al. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. N. Phytol. 211, 1209–1220 (2016).

    Google Scholar 

  46. 46.

    Papanatsiou, M. et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363, 1456–1459 (2019).

    CAS  PubMed  Google Scholar 

  47. 47.

    Banwart, S. A. et al. Soil functions: connecting Earth’s critical zone. Annu. Rev. Earth Planet. Sci. 47, 333–359 (2019).

    CAS  Google Scholar 

  48. 48.

    Goucher, L., Bruce, R., Cameron, D., Koh, S. C. L. & Horton, P. Environmental impact of fertiliser embodied in a wheat-to-bread supply chain. Nat. Plants 3, 17012 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Mus, F. et al. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl. Environ. Microbiol. 82, 3698–3710 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wu, K. et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, eaaz2046 (2020).

    CAS  PubMed  Google Scholar 

  51. 51.

    Bechar, A. & Vigneault, C. Agricultural robots for field operations: concepts and components. Biosyst. Eng. 149, 94–111 (2016).

    Google Scholar 

  52. 52.

    Thurow, R. The Last Hunger Season: A Year in an African Farm Community of the Brink of Change (Public Affairs Press, 2013).

    Google Scholar 

  53. 53.

    Stevenson, J. R. et al. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc. Natl Acad. Sci. USA 110, 8363–8368 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).

    Google Scholar 

  55. 55.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  PubMed  Google Scholar 

  56. 56.

    Bossio, D. A. et al. The role of soils in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Google Scholar 

  57. 57.

    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).

    Google Scholar 

  58. 58.

    Food and Agriculture Data (FAO, 2020); http://faostat3.fao.org/home/E

  59. 59.

    Perino, A. et al. Rewinding complex ecosystems. Science 364, eaav5570 (2019).

    CAS  PubMed  Google Scholar 

  60. 60.

    Field, J. L. et al. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl Acad. Sci. USA 117, 21968–21977 (2020).

    CAS  PubMed  Google Scholar 

  61. 61.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Regenerate natural forests to store carbon. Nature 568, 25–28 (2019).

    CAS  PubMed  Google Scholar 

  62. 62.

    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    CAS  PubMed  Google Scholar 

  63. 63.

    Poulton, P. R., Pye, E., Hargreaves, P. R. & Jenkinson, D. S. Accumulation of carbon and nitrogen by old arable land reverting to woodland. Glob. Change Biol. 9, 942–955 (2003).

    Google Scholar 

  64. 64.

    Hudiburg, T. W., Davis, S. C., Parton, W. & Delucia, E. H. Bioenergy crop greenhouse gas mitigation potential under a range of management practices. Glob. Change Biol. Bioenergy 7, 366–374 (2015).

    CAS  Google Scholar 

  65. 65.

    Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Google Scholar 

Download references

Acknowledgements

D.J.B. and S.A.B. acknowledge funding from the Leverhulme Trust through a Leverhulme Research Centre Award (RC-2015-029). S.P.L. acknowledges funding from the DOE Center for Advanced Bioenergy and Bioproducts Innovation (US Department of Energy, Office of Science, Office of Biological and Environmental Research under award number DE-SC0018420). The input of P.S. contributes to the DEVIL (NE/M021327/1) and Soils‐R‐GRREAT (NE/P019455/1) projects.

Author information

Affiliations

Authors

Contributions

P.H., S.P.L., P.S., S.A.B. and D.J.B. wrote the paper.

Corresponding author

Correspondence to David J. Beerling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horton, P., Long, S.P., Smith, P. et al. Technologies to deliver food and climate security through agriculture. Nat. Plants 7, 250–255 (2021). https://doi.org/10.1038/s41477-021-00877-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing