Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How the O2-dependent Mg-protoporphyrin monomethyl ester cyclase forms the fifth ring of chlorophylls

Abstract

Mg-protoporphyrin IX monomethyl ester (MgPME) cyclase catalyses the formation of the isocyclic ring, producing protochlorophyllide a and contributing substantially to the absorption properties of chlorophylls and bacteriochlorophylls. The O2-dependent cyclase is found in both oxygenic phototrophs and some purple bacteria. We overproduced the simplest form of the cyclase, AcsF, from Rubrivivax gelatinosus, in Escherichia coli. In biochemical assays the di-iron cluster within AcsF is reduced by ferredoxin furnished by NADPH and ferredoxin:NADP+ reductase, or by direct coupling to Photosystem I photochemistry, linking cyclase to the photosynthetic electron transport chain. Kinetic analyses yielded a turnover number of 0.9 min−1, a Michaelis–Menten constant of 7.0 µM for MgPME and a dissociation constant for MgPME of 0.16 µM. Mass spectrometry identified 131-hydroxy-MgPME and 131-keto-MgPME as cyclase reaction intermediates, revealing the steps that form the isocyclic ring and completing the work originated by Sam Granick in 1950.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed reaction intermediates of MgPME cyclase.
Fig. 2: Purification, spectral characterization and reconstitution of AcsF cyclase activity.
Fig. 3: Steady-state kinetics of AcsF, and binding of MgPME to AcsF analysed by tryptophan fluorescence quenching.
Fig. 4: HPLC elution profiles of pigment extracts from end-point cyclase assays at various AcsF concentrations.
Fig. 5: Analysis of extracted pigments by LC–ESI–MS/MS.
Fig. 6: Diagram depicting the Fd-dependent cyclase reaction catalysed by AcsF and the supply of reduced Fd, directly or indirectly, by PSI.

Similar content being viewed by others

Data availability

All supporting data are included in the Supplementary Information. The mass spectrometry raw data files used for Fig. 5 and Supplementary Fig. 3 have been deposited to https://figshare.shef.ac.uk/articles/dataset/13655774. Source data are provided with this paper.

References

  1. Porra, R. J. et al. Origin of the two carbonyl oxygens of bacteriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation. Eur. J. Biochem. 239, 85–92 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Porra, R. J., Urzinger, M., Winkler, J., Bubenzer, C. & Scheer, H. Biosynthesis of the 3-acetyl and 131-oxo groups of bacteriochlorophyll a in the facultative aerobic bacterium, Rhodovulum sulfidophilum: the presence of both oxygenase and hydratase pathways for isocyclic ring formation. Eur. J. Biochem. 257, 185–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Wiesselmann, M. et al. Mg-protoporphyrin IX monomethyl ester cyclase from Rhodobacter capsulatus: radical SAM-dependent synthesis of the isocyclic ring of bacteriochlorophylls. Biochem. J. 477, 4635–4654 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, G. E., Canniffe, D. P. & Hunter, C. N. Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis. Proc. Natl Acad. Sci. USA 114, 6280–6285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pinta, V., Picaud, M., Reiss-Husson, F. & Astier, C. Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J. Bacteriol. 184, 746–753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hollingshead, S. et al. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J. Biol. Chem. 287, 27823–27833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albus, C. A. et al. LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in tobacco. Plant Physiol. 160, 1923–1939 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Granick, S. The structural and functional relationships between heme and chlorophyll. Harvey Lect. Ser. 44, 220–245 (1950).

    Google Scholar 

  9. Chereskin, B. M. & Castelfranco, P. A. Effects of iron and oxygen on chlorophyll biosynthesis: II. Observations on the biosynthetic pathway in isolated etiochloroplasts. Plant Physiol. 69, 112–116 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chereskin, B. M., Wong, Y. S. & Castelfranco, P. A. In vitro synthesis of the chlorophyll isocyclic ring: transformation of magnesium-protoporphyrin IX and magnesium-protoporphyrin IX monomethyl ester into magnesium-2,4-divinyl pheoporphyrin a5. Plant Physiol. 70, 987–993 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nasrulhaq-Boyce, A., Griffiths, W. T. & Jones, O. T. The use of continuous assays to characterize the oxidative cyclase that synthesizes the chlorophyll isocyclic ring. Biochem. J. 243, 23–29 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walker, C. J., Mansfield, K. E., Smith, K. M. & Castelfranco, P. A. Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem. J. 257, 599–602 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong, Y. S. & Castelfranco, P. A. Resolution and reconstitution of Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, the enzyme system responsible for the formation of the chlorophyll isocyclic ring. Plant Physiol. 75, 658–661 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bollivar, D. W. & Beale, S. I. Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts. Photosynth. Res. 43, 113–124 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Bollivar, D. W. & Beale, S. I. The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase: characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. Plant Physiol. 112, 105–114 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rzeznicka, K. et al. Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc. Natl Acad. Sci. USA 102, 5886–5891 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ellsworth, R. K. & Aronoff, S. Investigations on the biogenesis of chlorophyll a: III. Biosynthesis of Mg-vinylpheoporphine a5 methylester from Mg-protoporphine IX monomethylester as observed in Chlorella mutants. Arch. Biochem. Biophys. 125, 269–277 (1968).

    Article  CAS  PubMed  Google Scholar 

  18. Ellsworth, R. K. & Aronoff, S. Investigations of the biogenesis of chlorophyll a: IV. Isolation and partial characterization of some biosynthetic intermediates between Mg-protoporphine IX monomethyl ester and Mg-vinylpheoporphine a5, obtained from Chlorella mutants. Arch. Biochem. Biophys. 130, 374–383 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. Wong, Y. S. & Castelfranco, P. A. Properties of the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase system. Plant Physiol. 79, 730–733 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walker, C. J. et al. The magnesium-protoporphyrin IX (oxidative) cyclase system: studies on the mechanism and specificity of the reaction sequence. Biochem. J. 255, 685–692 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, G. E. et al. Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Strop, P. & Brunger, A. T. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein Sci. 14, 2207–2211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fox, B. G., Shanklin, J., Somerville, C. & Münck, E. Stearoyl-acyl carrier protein Δ9 desaturase from Ricinus communis is a diiron-oxo protein. Proc. Natl Acad. Sci. USA 90, 2486–2490 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makris, T. M., Chakrabarti, M., Münck, E. & Lipscomb, J. D. A family of diiron monooxygenases catalyzing amino acid beta-hydroxylation in antibiotic biosynthesis. Proc. Natl Acad. Sci. USA 107, 15391–15396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Behan, R. K. & Lippard, S. J. The aging-associated enzyme CLK-1 is a member of the carboxylate-bridged diiron family of proteins. Biochemistry 49, 9679–9681 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Shanklin, J. & Somerville, C. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc. Natl Acad. Sci. USA 88, 2510–2514 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi, Y. S., Zhang, H., Brunzelle, J. S., Nair, S. K. & Zhao, H. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Proc. Natl Acad. Sci. USA 105, 6858–6863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Helfrich, M., Ross, A., King, G. C., Turner, A. G. & Larkum, A. W. D. Identification of [8-vinyl]-protochlorophyllide a in phototrophic prokaryotes and algae: chemical and spectroscopic properties. Biochim. Biophys. Acta 1410, 262–272 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Klement, H., Helfrich, M., Oster, U., Schoch, S. & Rüdiger, W. Pigment-free NADPH:protochlorophyllide oxidoreductase from Avena sativa L: purificaton and substrate specificity. Eur. J. Biochem. 265, 862–874 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Karger, G. A., Reid, J. D. & Hunter, C. N. Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 40, 9291–9299 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Meneely, K. M., Sundlov, J. A., Gulick, A. M., Moran, G. R. & Lamb, A. L. An open and shut case: the interaction of magnesium with MST enzymes. J. Am. Chem. Soc. 138, 9277–9293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schäfer, M., Drayß, M., Springer, A., Zacharias, P. & Meerholz, K. Radical cations in electrospray mass spectrometry: formation of open-shell species, examination of the fragmentation behaviour in ESI-MSn and reaction mechanism studies by detection of transient radical cations. Eur. J. Org. Chem. 2007, 5162–5174 (2007).

    Article  Google Scholar 

  34. Jensen, K., Johnston, J. B., de Montellano, P. R. O. & Møller, B. L. Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor: terminal hydroxylation of branched hydrocarbon chains. Biotechnol. Lett. 34, 239–245 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Biegel, E., Schmidt, S., González, J. M. & Müller, V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell. Mol. Life Sci. 68, 613–634 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Buckel, W. & Thauer, R. K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta 1827, 94–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, G. E. & Hunter, C. N. Protochlorophyllide synthesis by recombinant cyclases from eukaryotic oxygenic phototrophs and the dependence on Ycf54. Biochem. J. 477, 2313–2325 (2020).

    Article  PubMed  Google Scholar 

  38. Herbst, J., Girke, A., Hajirezaei, M. R., Hanke, G. & Grimm, B. Potential roles of YCF54 and ferredoxin-NADPH reductase for magnesium protoporphyrin monomethylester cyclase. Plant J. 94, 485–496 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Stuart, D. et al. Aerobic barley Mg-protoporphyrin IX monomethyl ester cyclase is powered by electrons from ferredoxin. Plants 9, 1157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steccanella, V., Hansson, M. & Jensen, P. E. Linking chlorophyll biosynthesis to a dynamic plastoquinone pool. Plant Physiol. Biochem. 97, 207–216 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta 1857, 247–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Heyes, D. J., Martin, G. E., Reid, R. J., Hunter, C. N. & Wilks, H. M. NADPH:protochlorophyllide oxidoreductase from Synechocystis: overexpression, purification and preliminary characterisation. FEBS Lett. 483, 47–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Reid, J. D. & Hunter, C. N. Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803. J. Biol. Chem. 279, 26893–26899 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Shepherd, M. & Hunter, C. N. Transient kinetics of the reaction catalysed by magnesium protoporphyrin IX methyltransferase. Biochem. J. 382, 1009–1013 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shepherd, M., Reid, J. D. & Hunter, C. N. Purification and kinetic characterization of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803. Biochem. J. 371, 351–360 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong, Y. S., Castelfranco, P. A., Goff, D. A. & Smith, K. M. Intermediates in the formation of the chlorophyll isocyclic ring. Plant Physiol. 79, 725–729 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rebeiz, C. A., Mattheis, J. R., Smith, B. B., Rebeiz, C. C. & Dayton, D. F. Chloroplast biogenesis: biosynthesis and accumulation of Mg-protoporphyrin IX monoester and longer wavelength metalloporphyrins by greening cotyledons. Arch. Biochem. Biophys. 166, 446–465 (1975).

    Article  CAS  PubMed  Google Scholar 

  48. Walters, K. A. & Golbeck, J. H. Designing a modified clostridial 2[4Fe–4S] ferredoxin as a redox coupler to directly link photosystem I with a Pt nanoparticle. Photosynth. Res. 143, 165–181 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Artimo, P. et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, W597–W603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pueyo, J. J. & Gómez-Moreno, C. Purification of ferredoxin-NADP+ reductase, flavodoxin and ferredoxin from a single batch of the cyanobacterium Anabaena PCC 7119. Prep. Biochem. 21, 191–204 (1991).

    CAS  PubMed  Google Scholar 

  51. Whittington, D. A. & Lippard, S. J. Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. J. Am. Chem. Soc. 123, 827–838 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Swainsbury, University of Sheffield, for providing membrane protein standards for gel filtration calibration and N. Soulier, The Pennsylvania State University, for supplying the BL21(DE3) ΔiscR strain. G.E.C., N.B.P.A. P.J.J. and C.N.H. thank the Biotechnology and Biological Sciences Research Council (BBSRC UK, award no. BB/M000265/1) for financial support. C.N.H. is also supported by European Research Council Synergy Award no. 854126. M.J.D. was supported by BBSRC UK (award no. BB/M012166/1).

Author information

Authors and Affiliations

Authors

Contributions

G.E.C., N.B.P.A., P.J.J., M.J.D. and C.N.H. designed the research. G.E.C., N.B.P.A. and P.J.J. performed research and analysed data. G.E.C., N.B.P.A., P.J.J., M.J.D. and C.N.H. wrote the manuscript.

Corresponding authors

Correspondence to Guangyu E. Chen or C. Neil Hunter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Bernhard Grimm and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Analysis of purified Anabaena Fd and FNR.

a, SDS-PAGE analysis of purified Anabaena Fd and FNR. b, Absorbance spectrum of purified Anabaena Fd. c, Absorbance spectrum of purified Anabaena FNR.

Source data

Extended Data Fig. 2 HPLC elution profiles of pigment extracts from coupled PSI-cyclase assays.

A complete assay contained 2 µM AcsF, 0.04 mg ml−1 spinach Fd, 14 µM MgPME, spinach PSI containing 6 (1× PSI) or 22.4 µM (~4× PSI) Chl a, 20 µM spinach Pc, 2 mM Asc, 60 µM DCPIP and 0.29 mg ml−1 catalase. Assays were incubated either in the dark for 30 min, or under red light illumination for 15 or 30 min. Pigment extracts from the assays were analysed by HPLC and pigment elution was monitored by fluorescence at 640 nm excited at 440 nm. Pigment species were identified by retention times and fluorescence spectra (as in Fig. 4). See Supplementary Fig. 4a for HPLC analysis of pigment extracts from additional control assays.

Source data

Extended Data Fig. 3 The diiron binding motif and proposed diiron ligation of AcsF.

a, Sequence alignments showing the conserved diiron binding motif of AcsF proteins. Sequences are from Synechocystis sp. PCC 6803 (CycI, BAA16583), Arabidopsis thaliana (CHL27, NP_191253), Chlamydomonas reinhardtii (CRD1, XP_001692557; CTH1, XP_001691047), Rubrivivax gelatinosus IL144 (AcsF, BAL96694) and Rhodobacter sphaeroides 2.4.1 (0294, abbreviated for RSP_0294, YP_353369). Conserved, highly similar and similar residues are marked with asterisks, colons and full stops, respectively. The putative diiron ligands are in red and bold. Full-length protein sequences were used for alignments but for clarity, only the putative diiron binding motifs with the residue range indicated, are shown. b, Sequence homologies between the diiron binding motifs of AcsF proteins and the soluble methane monooxygenase hydroxylase subunit from Methylococcus capsulatus Bath (MMOH, P22869). c, Proposed coordination of the diiron ligands of AcsF at the diferrous state based on the crystal structure of MMOH (PDB, 1FYZ)51.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Table 1.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G.E., Adams, N.B.P., Jackson, P.J. et al. How the O2-dependent Mg-protoporphyrin monomethyl ester cyclase forms the fifth ring of chlorophylls. Nat. Plants 7, 365–375 (2021). https://doi.org/10.1038/s41477-021-00876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00876-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing