Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SYSTEMIC NITRATE SIGNALLING

Liberating nitrate transport activity

Managing root nitrate transport is required by plants to meet ongoing nitrogen demands, and is coordinated by bidirectional communication between roots and shoots. Shoot-derived signals can now be directly linked to the activation of nitrate transport by CEPH, a targeted NRT2;1-specific phosphatase.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NRT2.1 root activation is a downstream outcome of long-distance N signalling between root and shoot tissues.

References

  1. Li, W. et al. Plant Physiol. 143, 425–433 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garnett, T., Conn, V. & Kaiser, B. Plant Cell Environ. 32, 1272–1283 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Filleur, S. et al. FEBS Lett. 489, 220–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Cerezo, M. et al. Plant Physiol. 127, 262–271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Remans, T. et al. Plant Physiol. 140, 909–921 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garnett, T. et al. New Phytol. 198, 82–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Tabata, R. et al. Science 346, 343–346 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Ohkubo, Y., Tanaka, M., Tabata, R., Ogawa-Ohnishi, M. & Matsubayashi, Y. Nat. Plants 3, 17029 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Ota, R., Ohkubo, Y., Yamashita, Y., Ogawa-Ohnishi, M. & Matsubayashi, Y. Nat. Commun. 11, 641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wirth, J. et al. J. Biol. Chem. 282, 23541–23552 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Laugier, E. et al. Plant Physiol. 158, 1067–1078 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Jacquot, A., Li, Z., Gojon, A., Schulze, W. & Lejay, L. J. Exp. Bot. 68, 2567–2580 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Jacquot, A. et al. New Phytol. 228, 1038–1054 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Ohkubo, Y., Kuwata, K. & Matsubayashi, Y. Nat. Plants https://doi.org/10.1038/s41477-021-00870-9 (2021).

  15. Ho, C. H., Lin, S. H., Hu, H. C. & Tsay, Y. F. Cell 138, 1184–1194 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent N. Kaiser.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, B.N. Liberating nitrate transport activity. Nat. Plants 7, 246–247 (2021). https://doi.org/10.1038/s41477-021-00875-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00875-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing