Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stimulating photosynthetic processes increases productivity and water-use efficiency in the field

Abstract

Previous studies have demonstrated that the independent stimulation of either electron transport or RuBP regeneration can increase the rate of photosynthetic carbon assimilation and plant biomass. In this paper, we present evidence that a multigene approach to simultaneously manipulate these two processes provides a further stimulation of photosynthesis. We report on the introduction of the cyanobacterial bifunctional enzyme fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase or the overexpression of the plant enzyme sedoheptulose-1,7-bisphosphatase, together with the expression of the red algal protein cytochrome c6, and show that a further increase in biomass accumulation under both glasshouse and field conditions can be achieved. Furthermore, we provide evidence that the stimulation of both electron transport and RuBP regeneration can lead to enhanced intrinsic water-use efficiency under field conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Screening of transgenic plants overexpressing FBP/SBPase, SBPase and cytochrome c6.
Fig. 2: Photosynthetic responses of transgenic plants grown in the glasshouse.
Fig. 3: Increased SBPase or expression of FBP/SBPase and cytochrome c6 increases biomass in glasshouse-grown plants.
Fig. 4: Simultaneous expression of FBP/SBPase and cytochrome c6 increases biomass in field-grown plants.
Fig. 5: Photosynthetic capacity of field-grown transgenic plants.
Fig. 6: Simultaneous expression of FBP/SBPase and cytochrome c6 can increase water-use efficiency under field conditions.

Data availability

The data that support the findings of this study, the plant transformation constructs and the seed are available from the corresponding authors on reasonable request.

References

  1. 1.

    Zhu, X. G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

    CAS  PubMed  Google Scholar 

  2. 2.

    Simkin, A. J., Lopez-Calcagno, P. E. & Raines, C. A. Feeding the world: improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 70, 1119–1140 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Simkin, A. J. Genetic engineering for global food security: photosynthesis and biofortification. Plants 8, 586–615 (2019).

    CAS  PubMed Central  Google Scholar 

  4. 4.

    Miyagawa, Y., Tamoi, M. & Shigeoka, S. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19, 965–969 (2001).

    CAS  PubMed  Google Scholar 

  5. 5.

    Lefebvre, S. et al. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol. 138, 451–460 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Raines, C. A. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ. 29, 331–339 (2006).

    CAS  PubMed  Google Scholar 

  7. 7.

    Rosenthal, D. M. et al. Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1-7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol. 11, 123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Simkin, A. J., McAusland, L., Headland, L. R., Lawson, T. & Raines, C. A. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J. Exp. Bot. 66, 4075–4090 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Simkin, A. J. et al. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol. J. 15, 805–816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Zhu, X. G., de Sturler, E. & Long, S. P. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol. 145, 513–526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29, 315–330 (2006).

    CAS  PubMed  Google Scholar 

  12. 12.

    Poolman, M. G., Fell, D. A. & Thomas, S. Modelling photosynthesis and its control. J. Exp. Bot. 51, 319–328 (2000).

    CAS  PubMed  Google Scholar 

  13. 13.

    Raines, C. A. The Calvin cycle revisited. Photosynth. Res. 75, 1–10 (2003).

    CAS  PubMed  Google Scholar 

  14. 14.

    Uematsu, K., Suzuki, N., Iwamae, T., Inui, M. & Yukawa, H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J. Exp. Bot. 63, 3001–3009 (2012).

    CAS  PubMed  Google Scholar 

  15. 15.

    Ding, F., Wang, M. L., Zhang, S. X. & Ai, X. Z. Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants. Sci. Rep. 6, 32741 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Driever, S. M. et al. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Phil. Trans. R. Soc. B 372, 1730 (2017).

    Google Scholar 

  17. 17.

    Tamoi, M., Nagaoka, M., Miyagawa, Y. & Shigeoka, S. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol. 47, 380–390 (2006).

    CAS  PubMed  Google Scholar 

  18. 18.

    Ichikawa, Y. et al. Generation of transplastomic lettuce with enhanced growth and high yield. GM Crops 1, 322–326 (2010).

    PubMed  Google Scholar 

  19. 19.

    Kohler, I. H. et al. Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. J. Exp. Bot. 68, 715–726 (2017).

    PubMed  Google Scholar 

  20. 20.

    Simkin, A. J., McAusland, L., Lawson, T. & Raines, C. A. Overexpression of the Rieske FeS protein increases electron transport rates and biomass yield. Plant Physiol. 175, 134–145 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ermakova, M., Lopez-Calcagno, P. E., Raines, C. A., Furbank, R. T. & von Caemmerer, S. Overexpression of the Rieske FeS protein of the cytochrome b6f complex increases C4 photosynthesis in Setaria viridis. Commun. Biol. 2, 314 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Chida, H. et al. Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol. 48, 948–957 (2007).

    CAS  PubMed  Google Scholar 

  23. 23.

    Yadav, S. K., Khatri, K., Rathore, M. S. & Jha, B. Introgression of UfCyt c6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol. Biol. Rep. 45, 1745–1758 (2018).

    CAS  PubMed  Google Scholar 

  24. 24.

    Merchant, S. & Bogorad, L. The Cu(II)-repressible plastidic cytochrome c: cloning and sequence of a complementary DNA for the pre-apoprotein. J. Biol. Chem. 262, 9062–9067 (1987).

    CAS  PubMed  Google Scholar 

  25. 25.

    De la Rosa, M. A., Molina-Heredia, F. P., Hervás, M. & Navarro, J. A. in Photosystem I: Advances in Photosynthesis and Respiration Vol. 24 (ed. Golbeck, J. H.) 683–696 (Springer, 2006).

  26. 26.

    Finazzi, G., Sommer, F. & Hippler, M. Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem I and cytochrome b6f complex in vivo. Proc. Natl Acad. Sci. USA 102, 7031–7036 (2005).

    CAS  PubMed  Google Scholar 

  27. 27.

    Gong, H. Y. et al. Transgenic rice expressing Ictb and FBP/SBPase derived from cyanobacteria exhibits enhanced photosynthesis and mesophyll conductance to CO2. PLoS ONE 10, e0140928 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Wullschleger, S. D. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. J. Exp. Bot. 44, 907–920 (1993).

    CAS  Google Scholar 

  29. 29.

    Pesaresi, P. et al. Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol. Plant 2, 236–248 (2009).

    CAS  PubMed  Google Scholar 

  30. 30.

    López-Calcagno, P. E. et al. Overexpressing the H‐protein of the glycine cleavage system increases biomass yield in glasshouse and field‐grown transgenic tobacco plants. Plant Biotechnol. J. 17, 141–151 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Glowacka, K. et al. Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 9, 868 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Busch, F. A. Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain. Photosynth. Res. 119, 131–140 (2014).

    CAS  PubMed  Google Scholar 

  33. 33.

    Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden Gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34–41 (2007).

    CAS  PubMed  Google Scholar 

  36. 36.

    Simkin, A. J. et al. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85, 36–43 (2013).

    CAS  PubMed  Google Scholar 

  37. 37.

    Richins, R. D., Scholthof, H. B. & Shepherd, R. J. Sequence of figwort mosaic-virus DNA (Caulimovirus group). Nucleic Acids Res. 15, 8451–8466 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Horsch, R. B., Rogers, S. G. & Fraley, R. T. Transgenic plants—technology and applications. Abstr. Pap. Am. Chem. S. 190, 67 (1985).

    Google Scholar 

  39. 39.

    Hoagland, D. R. & Arnon, D. I. The Water-Culture Method for Growing Plants without Soil (College of Agriculture, 1950).

  40. 40.

    Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Lopez-Calcagno, P. E., Abuzaid, A. O., Lawson, T. & Raines, C. A. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin–Benson cycle. J. Exp. Bot. 68, 2285–2298 (2017).

    CAS  Google Scholar 

  42. 42.

    Dunford, R. P., Catley, M. A., Raines, C. A., Lloyd, J. C. & Dyer, T. A. Purification of active chloroplast sedoheptulose-1,7-bisphosphatase expressed in Escherichia coli. Protein Expr. Purif. 14, 139–145 (1998).

    CAS  PubMed  Google Scholar 

  43. 43.

    Henkes, S., Sonnewald, U., Badur, R., Flachmann, R. & Stitt, M. A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13, 535–551 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Khozaei, M. et al. Overexpression of plastid transketolase in tobacco results in a thiamine auxotrophic phenotype. Plant Cell 27, 432–447 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hiyama, T. Isolation of photosystem I particles from spinach. Methods Mol. Biol. 274, 11–17 (2004).

    CAS  PubMed  Google Scholar 

  46. 46.

    Zhao, Y. L. et al. Downregulation of transketolase activity is related to inhibition of hippocampal progenitor cell proliferation induced by thiamine deficiency. Biomed. Res. Int. 2014, 572915 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Barbagallo, R. P., Oxborough, K., Pallett, K. E. & Baker, N. R. Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol. 132, 485–493 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    von Caemmerer, S. et al. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J. Exp. Bot. 55, 1157–1166 (2004).

    Google Scholar 

  49. 49.

    Baker, N. R., Oxborough, K., Lawson, T. & Morison, J. I. L. High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. J. Exp. Bot. 52, 615–621 (2001).

    CAS  PubMed  Google Scholar 

  50. 50.

    Oxborough, K. & Baker, N. R. An evaluation of the potential triggers of photoinactivation of photosystem II in the context of a Stern–Volmer model for downregulation and the reversible radical pair equilibrium model. Phil. Trans. R. Soc. Lond. B 355, 1489–1498 (2000).

    CAS  Google Scholar 

  51. 51.

    Lawson, T., Lefebvre, S., Baker, N. R., Morison, J. I. L. & Raines, C. A. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J. Exp. Bot. 59, 3609–3619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Farquhar, G., von Caemmerer, S. V. & Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS  PubMed  Google Scholar 

  53. 53.

    Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30, 1035–1040 (2007).

    CAS  PubMed  Google Scholar 

  54. 54.

    Vialet-Chabrand, S., Matthews, J. S. A., Simkin, A. J., Raines, C. A. & Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173, 2163–2179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    von Caemmerer, S. & Farquhar, G. D. Some relationships between the biochemistry of photosynthesis and the gas-exchange of leaves. Planta 153, 376–387 (1981).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Realising Improved Photosynthetic Efficiency (RIPE) initiative awarded to C.A.R. by the University of Illinois. RIPE was possible through support from the Bill & Melinda Gates Foundation, DFID and FFAR, grant no. OPP1172157. This work was also supported by the Biotechnology and Biological Sciences Research Council (BBSRC) grant no. BB/J004138/1. We thank J. Matthews (University of Essex) for help with the data analysis, E. A. Pelech (University of Illinois) and S. Subramaniam (University of Essex) for help with plant growth, P. A. Davey (University of Essex) and R. Gossen (University of Helsinki) for help with gas exchange, and D. Drag, B. Harbaugh and the Ort lab (University of Illinois) for support with the field trials.

Author information

Affiliations

Authors

Contributions

P.E.L.-C. and A.J.S. generated the transgenic plants. P.E.L.-C., A.J.S., K.L.B. and S.J.F. performed the molecular and biochemical experiments. P.E.L.-C., A.J.S. and K.L.B. carried out the plant phenotypic and growth analysis and performed the gas-exchange measurements. S.V.-C. made the measurements of photosynthesis during light induction. A.J.S. and S.J.F. performed the enzyme assays on selected lines. All authors carried out data analysis on their respective contributions. C.A.R. and T.L. designed and supervised the research. P.E.L.-C., A.J.S. and C.A.R. wrote the manuscript. T.L. contributed to the editing of the manuscript and finalizing of the figures.

Corresponding authors

Correspondence to Patricia E. López-Calcagno or Christine A. Raines.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Table 1.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López-Calcagno, P.E., Brown, K.L., Simkin, A.J. et al. Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. Nat. Plants 6, 1054–1063 (2020). https://doi.org/10.1038/s41477-020-0740-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing