Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BRAHMA-interacting proteins BRIP1 and BRIP2 are core subunits of Arabidopsis SWI/SNF complexes

Abstract

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodelling complexes are multi-protein machineries that control gene expression by regulating chromatin structure in eukaryotes. However, the full subunit composition of SWI/SNF complexes in plants remains unclear. Here we report that in Arabidopsis thaliana, two homologous glioma tumour suppressor candidate region domain-containing proteins, named BRAHMA-interacting proteins 1 (BRIP1) and BRIP2, are core subunits of plant SWI/SNF complexes. brip1 brip2 double mutants exhibit developmental phenotypes and a transcriptome remarkably similar to those of BRAHMA (BRM) mutants. Genetic interaction tests indicated that BRIP1 and BRIP2 act together with BRM to regulate gene expression. Furthermore, BRIP1 and BRIP2 physically interact with BRM-containing SWI/SNF complexes and extensively co-localize with BRM on chromatin. Simultaneous mutation of BRIP1 and BRIP2 results in decreased BRM occupancy at almost all BRM target loci and substantially reduced abundance of the SWI/SNF assemblies. Together, our work identifies new core subunits of BRM-containing SWI/SNF complexes in plants and uncovers the essential role of these subunits in maintaining the abundance of SWI/SNF complexes in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BRIP1 and BRIP2 interact with BRM-containing SWI/SNF complexes.
Fig. 2: brip1 brip2 double mutants show phenotypes similar to brm.
Fig. 3: BRIP1 and BRIP2 co-occupy with BRM genome-wide.
Fig. 4: Loss of BRIP1/2 leads to genome-wide decrease in BRM occupancy.
Fig. 5: BRIP1 and BRIP2 are essential for the integrity of BRM complexes.
Fig. 6: The GLTSCR domain is essential for the function of BRIP2.

Similar content being viewed by others

Data availability

The ChIP–seq and RNA-seq datasets have been deposited in the Gene Expression Omnibus (GEO) under accession no. GSE142369. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium under the dataset identifier PXD018815. Source data are provided with this paper.

References

  1. Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ryan, D. P. & Owen-Hughes, T. Snf2-family proteins: chromatin remodellers for any occasion. Curr. Opin. Chem. Biol. 15, 649–656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarnowska, E. et al. The role of SWI/SNF chromatin remodeling complexes in hormone crosstalk. Trends Plant Sci. 21, 594–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Han, S. K., Wu, M. F., Cui, S. & Wagner, D. Roles and activities of chromatin remodeling ATPases in plants. Plant J. 83, 62–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Jerzmanowski, A. SWI/SNF chromatin remodeling and linker histones in plants. Biochim. Biophys. Acta 1769, 330–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Vercruyssen, L. et al. ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant Cell 26, 210–229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nelissen, H. et al. Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize Leaf. Plant Cell 27, 1605–1619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, C. et al. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687–693 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, C. et al. The Arabidopsis SWI2/SNF2 chromatin remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP. PLoS Genet. 11, e1004944 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang, S. et al. The Arabidopsis SWI2/SNF2 chromatin remodeling ATPase BRAHMA targets directly to PINs and is required for root stem cell niche maintenance. Plant Cell 27, 1670–1680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reyes, J. C. The many faces of plant SWI/SNF complex. Mol. Plant 7, 454–458 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Han, S. K. et al. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24, 4892–4906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farrona, S., Hurtado, L., Bowman, J. L. & Reyes, J. C. The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131, 4965–4975 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, X. et al. The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves. Plant Physiol. 147, 1143–1157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, M. F. et al. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proc. Natl Acad. Sci. USA 109, 3576–3581 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, D., Li, Y., Zhang, X., Zha, P. & Lin, R. The SWI2/SNF2 chromatin-remodeling ATPase BRAHMA regulates chlorophyll biosynthesis in Arabidopsis. Mol. Plant 10, 155–167 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Vicente, J. et al. The Cys-Arg/N-End rule pathway is a general sensor of abiotic stress in flowering plants. Curr. Biol. 27, 3183–3190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, Y. et al. Regulation of vegetative phase change by SWI2/SNF2 chromatin remodeling ATPase BRAHMA. Plant Physiol. 172, 2416–2428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, M. F. et al. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 4, e09269 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Efroni, I. et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev. Cell 24, 438–445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, M. et al. Arabidopsis BREVIPEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture. PLoS Genet. 11, e1005125 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Brzezinka, K. et al. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. eLife 5, e17061 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sarnowski, T. J. et al. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. Plant Cell 17, 2454–2472 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saez, A., Rodrigues, A., Santiago, J., Rubio, S. & Rodriguez, P. L. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell 20, 2972–2988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Archacki, R. et al. Genetic analysis of functional redundancy of BRM ATPase and ATSWI3C subunits of Arabidopsis SWI/SNF chromatin remodelling complexes. Planta 229, 1281–1292 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Sacharowski, S. P. et al. SWP73 subunits of Arabidopsis SWI/SNF chromatin remodeling complexes play distinct roles in leaf and flower development. Plant Cell 27, 1889–1906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buszewicz, D. et al. HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. Plant Cell Environ. 39, 2108–2122 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Jegu, T. et al. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biol. 18, 114 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Oh, E., Zhu, J. Y. & Wang, Z. Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14, 802–809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, J. et al. A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root development. Plant Physiol. 173, 1574–1582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hurtado, L., Farrona, S. & Reyes, J. C. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Plant Mol. Biol. 62, 291–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Perez-Perez, J. M., Candela, H. & Micol, J. L. Understanding synergy in genetic interactions. Trends Genet. 25, 368–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Alpsoy, A. & Dykhuizen, E. C. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J. Biol. Chem. 293, 3892–3903 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 106, 5181–5186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Middeljans, E. et al. SS18 together with animal-specific tactors defines human BAF-type SWI/SNF complexes. PLoS ONE 7, e33834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gatchalian, J. et al. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat. Commun. 9, 5139 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Archacki, R. et al. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Res. 45, 3116–3129 (2017).

    CAS  PubMed  Google Scholar 

  43. Torres, E. S. & Deal, R. B. The histone variant H2A.Z and chromatin remodeler BRAHMA act coordinately and antagonistically to regulate transcription and nucleosome dynamics in Arabidopsis. Plant J. 99, 144–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ho, L. et al. esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat. Cell Biol. 13, 903–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Horiguchi, G., Kim, G. T. & Tsukaya, H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J. 43, 68–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Sakamoto, T., Tsujimoto-Inui, Y. & Sotta, N. Proteasomal degradation of BRAHMA promotes boron tolerance in Arabidopsis. Nat. Commun. 9, 5285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pan, J., McKenzie, Z. M., D’Avino, A. R., Mashtalir, N. & Lareau, C. A. The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting. Nat. Genet. 51, 618–626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Farrona, S., Hurtado, L. & Reyes, J. C. A nucleosome interaction module is required for normal function of Arabidopsis thaliana BRAHMA. J. Mol. Biol. 373, 240–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, X. et al. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat. Commun. 7, 12768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adachi, S., Nobusawa, T. & Umeda, M. Quantitative and cell type-specific transcriptional regulation of A-type cyclin-dependent kinase in Arabidopsis thaliana. Dev. Biol. 329, 306–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saeed, A. I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 43, W566–W570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gendrel, A. V., Lippman, Z., Martienssen, R. & Colot, V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2, 213–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, C. et al. Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis. Nat. Plants 3, 814–824 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP–seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, Y. Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lu, Q. et al. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J. 61, 259–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Li, J. F., Zhang, D. D. & Sheen, J. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat. Protoc. 9, 939–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, Y. C. et al. LjCOCH interplays with LjAPP1 to maintain the nodule development in Lotus japonicus. Plant Growth Regul. 85, 267–279 (2018).

    Article  CAS  Google Scholar 

  74. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, Z. L. et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat. Genet. 50, 1247–1253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heger, A., Webber, C., Goodson, M., Ponting, C. P. & Lunter, G. GAT: a simulation framework for testing the association of genomic intervals. Bioinformatics 29, 2046–2048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the ABRC for seeds of tDNA insertion lines, S. Yang and X. Hou (Chinese Academy of Sciences) for the pEAQ-BRM-N-GFP vector and pZPY122-FLAG vector, respectively, and J. Li (Sun Yat-sen University) for the pHBT-HA vector. This work was supported by the National Natural Science Foundation of China to C.L. (no. 31870289) and the Natural Science and Engineering Council of Canada to Y.C. (no. RGPIN/04625-2017).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and C.L. conceived the project. Y.Y. performed most of the experiments. Wenqun Fu constructed the GUS reporter lines. Y.Y., Z.L., L.Y. and C.L. conducted bioinformatics analysis. Y.Y., Z.L., X.S., Wei Fu, Y.L., L.Y., J.X., J.R., C.C., Y.C. and S.H. analysed data. Y.Y. and C.L. wrote the manuscript.

Corresponding author

Correspondence to Chenlong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Physical interaction among BRIP1, BRIP2 and SWI/SNF complex.

a, Bimolecular Fluorescence Complementation assay (BiFC) showing that BRIP1 and BRIP2 interact with SWI/SNF complex core members. An unrelated nuclear protein encoded by AT3G60390 was used as a negative control. error bar = 20 μm. b, Co-immunoprecipitation of BRIP1 with BRM-N (N-terminal of BRM, 1-952 amino acids). BRM-N-GFP was immunoprecipitated by an anti-HA-Agarose antibody from protoplasts co-transfected with BRM-N-GFP and BRIP1-HA. The antibodies used for immunoblot are indicated on the left, and the sizes of the protein markers are indicated on the right. c, Yeast-two hybrid assay to examine the region of BRM that interacts with BRIP1/2. Growth of transformed yeast is shown on permissive SD -Ade/-His/-Leu/-Trp medium.

Source data

Extended Data Fig. 2 Gene structures and Genetic materials.

a, Schematic illustration of the conserved domain of BRIP1 and BRIP2. The numbers indicate the positions of amino acids. At the bottom, the alignment of the sequences of the GLTSCR domain of BRIP1/2 proteins. The amino acids same in both proteins are marked by red. b, Schematic illustration of the locations of the T-DNA insertion sites (dark arrow) of the two brip mutants. The GLTSCR domains are red marked. c, Genotyping of brip1 and brip2 by using the three primers method (LBb1.3+LP + RP). Wild-type (Col-0) was used as a control. d, The mRNA levels of BRIP1 and BRIP2 were determined by RT-PCR in brip1, brip2 and Col-0. GAPDH was amplified as an internal control. Error bars represent s.d. of three biological replicates, as determined by the post hoc Tukey’s HSD test.

Source data

Extended Data Fig. 3 Phenotype of brip1, brip2, brip1 brip2 and brm mutants.

a, Leaf phenotype of 14-day-old seedlings. Scale bars, 5 mm. b, Confocal images of root tips showing nuclear localization of the BRIP1-GFP and BRIP2-GFP in brip1 brip2 double mutant background. The red fluorescent signal is from propidium iodide staining. Scale bars, 50 μm. c, Number of rosette leaf of different plant materials at flowering. d, Silique phenotypes of different materials. Scale bars, 1 cm. Lowercase letters indicate significant differences between genetic backgrounds, as determined by the post hoc Tukey’s HSD test. The number of ‘n = ’ indicates the number of plants that were used. Data are presented as mean values +/− SD.

Source data

Extended Data Fig. 4 brip1brip2 mutants had similar transcriptome to brm mutants.

a, Summary of up- and down-regulated genes in different mutants compared to WT. The number indicates the concrete number of up- and down-regulated genes and the Y-axis showing the percentage of up- and down-regulated genes of all mis-regulated genes. b, Venn diagrams showing statistically significant overlaps between genes up- or down-regulated in brm-3 and those in brip1 brip2. p = 0, Hypergeometric test. c, Scatterplot of FPKM log2 fold change over WT of indicated mutants (y-axis) vs. brm-3 or brm-1 (x-axis) at brm-3 or brm-1 differentially expressed genes. Red lines indicate the line of best fit, and adjusted R value is indicated. Dots are mean values from three biologically independent experiments.

Source data

Extended Data Fig. 5 Plants expressing GFP-tagged BRIP1 or BRIP2 in their respective single mutant background.

a, Pictures showing 21-day-old plants. Scale bars, 1 cm. b, Confocal images of root tips showing nuclear localization of the BRIP1-GFP and BRIP2-GFP in their single mutant background. The red fluorescent signal is from propidium iodide staining. Scale bars, 50 μm. c, Western blot analysis using an anti-GFP antibody shows the accumulation of BRIP1 and BRIP2. For each plot, the antibody used is indicated on the left, and the sizes of the protein markers are indicated on the right. H3 serves as a loading control.

Source data

Extended Data Fig. 6 BRIP1, BRIP2 and BRM show a similar binding pattern.

a, Pie charts showing the distribution of BRM, BRIP1 and BRIP2 peaks at annotated genic and intergenic regions in the genome. b, The average enrichment of BRM, BRIP1 or BRIP2 at its target genes, respectively (n = 7,767, 5,035 and 7,023, respectively). Plotting regions were scaled to the same length as follows: 5′ ends (−3.0 kb to transcription starting site (TSS)) and 3′ ends (transcription stop site (TTS) to downstream 3.0 kb), and the gene body was scaled to 3 kb. Two biological replicates were included. c, GO analysis for biological processes associated with genes occupied by BRM, BRIP1 or BRIP2.

Extended Data Fig. 7 Loss of BRM causes the genome-wide decrease of BRIP1/2 occupancy.

a, On the top, Plot representation of the mean density of BRIP1 or BRIP2 occupancy at all BRIP1 or BRIP2 sites in brm-1 compared with WT. The average BRIP1/2 binding signal within 3 kb genomic regions flanking the summit of BRIP1/2 peaks are shown. Bottom, Heat-map representation of the occupancy of BRIP1 or BRIP1 in WT and brm-1. b, IGV views of BRIP1/2 occupancy at selected loci in WT and brm-1 background. The scale was identical for the different tracks, and gene structures are shown underneath each panel. The gene IDs and the ‘START and END’ positions on the chromosome are shown below. The y-axis scales represent shifted merged MACS2 tag counts for every 10-bp window.

Extended Data Fig. 8 The number of unique peptides identified by Mass spectrometry analyses.

a, Mass spectrometry results showing the total number of unique peptides in the input or IP samples of SWI3C-3×FLAG BRM-GFP brm-1 and SWI3C-3×FLAG BRM-GFP brm-1 brip1 brip2. b, The number of unique peptides of five representative proteins (named by UniProt) in the input samples SWI3C-3×FLAG BRM-GFP brm-1 before FLAG immunoprecipitation was similar to that in SWI3C-3×FLAG BRM-GFP brm-1 brip1 brip2. c, The number of unique peptides of five representative proteins (named by UniProt) in the input samples SWI3C-3×FLAG BRM-GFP brm-1 before GFP immunoprecipitation was similar to that in SWI3C-3×FLAG BRM-GFP brm-1 brip1 brip2. Error bars are presented as mean values from three biological replicates, +/− SD. N.S., not significant (Unpaired, two-tailed Student’s t-test).

Source data

Extended Data Fig. 9 Loss of GLTSCR domain impairs the function of BRIP2.

a, qRT-PCR analyses showing the mRNA level of BRIP2∆GLTSCR-GFP and full length BRIP2-GFP. The expression level of each gene was normalized to that of GAPDH. Error bars are presented as mean values from three biological replicates, +/− SD. ** p < 0.01 (Unpaired, two-tailed Student’s t-test). b, Morphological phenotypes of pBRIP2:BRIP2-GFP brip1 brip2 and pBRIP2:BRIP2∆ GLTSCR-GFP brip1 brip2. Photographs of 35-day-old plants are shown. Scale bar, 1 cm. c, Silique phenotypes of different materials. Scale bars, 1 cm. Lowercase letters indicate significant differences between genetic backgrounds, as determined by the post hoc Tukey’s HSD test. The number of ‘n = ’ indicates the number of plants that were used. Data are presented as mean values +/− SD.

Source data

Extended Data Fig. 10 Phylogenetic analysis of GLTSCR domain-containing proteins among different species.

a, The phylogenetic tree was constructed using the amino-acid sequences of the GLTSCR domain from different species, including Amborella trichopoda, Physcomitrella patens, Arabidopsis thaliana, Arabidopsis lyrate, Brassica napus, Oryza sativa Japonica, Triticum aestivum, Hordeum vulgare subsp. Vulgare, Zea mays, Homo sapiens, Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus. The scale length in the tree is indicated. b, The alignment of sequences of GLTSCR domain across different species. Conserved amino acids are marked in red (100%), green (≥75%), and purple (≥ 50%), respectively.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Tables

Supplementary Table 1: Summary of SWI/SNF complex core members according to the IP/MS results for BRM. Supplementary Table 2: List of genes misregulated in different mutants. Supplementary Table 3: List of genes occupied by BRM, BRIP1 or BRIP2 in Arabidopsis seedlings. Supplementary Table 4: Summary of IP–MS data. Supplementary Table 5: Oligonucleotides used in this study. Supplementary Table 6: Summary of mapped reads in ChIP–seq.

Source data

Source Data Fig. 1

Unprocessed immunoblots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Unprocessed immunoblots.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 6

Unprocessed immunoblots.

Source Data Extended Data Fig. 1

Unprocessed immunoblots.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed immunoblots.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Supplementary Fig. 2

Statistical source data.

Source Data Supplementary Fig. 3

Statistical source data.

Source Data Supplementary Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liang, Z., Song, X. et al. BRAHMA-interacting proteins BRIP1 and BRIP2 are core subunits of Arabidopsis SWI/SNF complexes. Nat. Plants 6, 996–1007 (2020). https://doi.org/10.1038/s41477-020-0734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0734-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing