Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Root architecture and hydraulics converge for acclimation to changing water availability


Because of intense transpiration and growth, the needs of plants for water can be immense. Yet water in the soil is most often heterogeneous if not scarce due to more and more frequent and intense drought episodes. The converse context, flooding, is often associated with marked oxygen deficiency and can also challenge the plant water status. Under our feet, roots achieve an incredible challenge to meet the water demand of the plant’s aerial parts under such dramatically different environmental conditions. For this, they continuously explore the soil, building a highly complex, branched architecture. On shorter time scales, roots keep adjusting their water transport capacity (their so-called hydraulics) locally or globally. While the mechanisms that directly underlie root growth and development as well as tissue hydraulics are being uncovered, the signalling mechanisms that govern their local and systemic adjustments as a function of water availability remain largely unknown. A comprehensive understanding of root architecture and hydraulics as a whole (in other terms, root hydraulic architecture) is needed to apprehend the strategies used by plants to optimize water uptake and possibly improve crops regarding this crucial trait.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The water uptake capacity of a root system is determined by both its architecture and hydraulics.
Fig. 2: Quantitative genetics allowed the identification of novel genes involved in the regulation of root hydraulics under composite stress conditions.


  1. 1.

    Voesenek, L. A. & Bailey-Serres, J. Flood adaptive traits and processes: an overview. New Phytol. 206, 57–73 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Tan, X. et al. Plant water transport and aquaporins in oxygen-deprived environments. J. Plant Physiol. 227, 20–30 (2018).

    CAS  PubMed  Google Scholar 

  3. 3.

    Daryanto, S., Wang, L. & Jacinthe, P. A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 11, e0156362 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).

    Google Scholar 

  5. 5.

    Manik, S. M. N. et al. Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Front. Plant Sci. 10, 140 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Du, T., Kang, S., Zhang, J. & Davies, W. J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 66, 2253–2269 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kirkegaard, J. A. et al. Improving water productivity in the Australian Grains industry—a nationally coordinated approach. Crop Pasture Sci. 65, 583–601 (2014).

    Google Scholar 

  8. 8.

    Davies, W. J. & Bennett, M. J. Achieving more crop per drop. Nat. Plants 1, 15118 (2015).

    PubMed  Google Scholar 

  9. 9.

    Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

    CAS  PubMed  Google Scholar 

  10. 10.

    Millet, E. J. et al. Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol. 172, 749–764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Atkinson, J. A., Pound, M. P., Bennett, M. J. & Wells, D. M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotechnol. 55, 1–8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Jung, J. K. & McCouch, S. Getting to the roots of it: genetic and hormonal control of root architecture. Front. Plant Sci. 4, 186 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lavenus, J. et al. Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci. 18, 450–458 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Petricka, J. J., Winter, C. M. & Benfey, P. N. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 63, 563–590 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lynch, J. P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347–357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ogura, T. et al. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell 178, 400–412 (2019).

    CAS  PubMed  Google Scholar 

  17. 17.

    Shahzad, Z. & Amtmann, A. Food for thought: how nutrients regulate root system architecture. Curr. Opin. Plant. Biol. 39, 80–87 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Tuberosa, R. et al. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 48, 697–712 (2002).

    CAS  PubMed  Google Scholar 

  19. 19.

    Ruta, N., Liedgens, M., Fracheboud, Y., Stamp, P. & Hund, A. QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor. Appl. Genet. 120, 621–631 (2010).

    CAS  PubMed  Google Scholar 

  20. 20.

    Gao, Y. & Lynch, J. P. Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J. Exp. Bot. 67, 4545–4557 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Sebastian, J. et al. Grasses suppress shoot-borne roots to conserve water during drought. Proc. Natl Acad. Sci. USA 113, 8861–8866 (2016).

    CAS  PubMed  Google Scholar 

  22. 22.

    Uga, Y. et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45, 1097–1102 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Jiang, N. et al. Three-dimensional time-lapse analysis reveals multiscale relationships in maize root systems with contrasting architectures. Plant Cell 31, 1708–1722 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Band, L. R. et al. Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell 24, 3892–3906 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Rellan-Alvarez, R., Lobet, G. & Dinneny, J. R. Environmental control of root system biology. Annu. Rev. Plant Biol. 67, 619–642 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Maurel, C. et al. Aquaporins in plants. Physiol. Rev. 95, 1321–1358 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    Bramley, H., Turner, N. C., Turner, D. W. & Tyerman, S. D. Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots. Plant Physiol. 150, 348–364 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hachez, C., Moshelion, M., Zelazny, E., Cavez, D. & Chaumont, F. Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol. Biol. 62, 305–323 (2006).

    CAS  PubMed  Google Scholar 

  29. 29.

    Barberon, M. et al. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164, 447–459 (2016).

    CAS  PubMed  Google Scholar 

  30. 30.

    Wang, P. et al. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci. Rep. 9, 4227 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Shahzad, Z. et al. A potassium-dependent oxygen sensing pathway regulates plant root hydraulics. Cell 167, 87–98 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Tang, N. et al. Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis. Nat Commun. 9, 3884 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Doussan, C., Vercambre, G. & Pages, L. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption — distribution of axial and radial conductances in maize. Ann. Bot. 81, 225–232 (1998).

    Google Scholar 

  34. 34.

    Doussan, C., Pages, L. & Vercambre, G. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption — model description. Ann. Bot. 81, 213–223 (1998).

    Google Scholar 

  35. 35.

    Lobet, G., Pages, L. & Draye, X. A modeling approach to determine the importance of dynamic regulation of plant hydraulic conductivities on the water uptake dynamics in the soil-plant-atmosphere system. Ecol. Model. 290, 65–75 (2014).

    Google Scholar 

  36. 36.

    Couvreur, V. et al. Going with the flow: multiscale insights into the composite nature of water transport in roots. Plant Physiol. 178, 1689–1703 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Meunier, F., Couvreur, V., Draye, X., Vanderborght, J. & Javaux, M. Towards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits. J. Math. Biol. 75, 1133–1170 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Zarebanadkouki, M., Kroener, E., Kaestner, A. & Carminati, A. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling. Plant Physiol. 166, 487–499 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Pierret, A., Doussan, C. & Pages, L. Spatio-temporal variations in axial conductance of primary and first order lateral roots of a maize crop as predicted by a model of the hydraulic architecture of root systems. Plant Soil 282, 117–126 (2006).

    CAS  Google Scholar 

  40. 40.

    Draye, X., Kim, Y., Lobet, G. & Javaux, M. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J. Exp. Bot. 8, 2145–2155 (2010).

    Google Scholar 

  41. 41.

    Matsuo, N., Ozawa, K. & Mochizuki, T. Genotypic differences in root hydraulic conductance of rice (Oryza sativa L.) in response to water regimes. Plant Soil 316, 25–34 (2009).

    CAS  Google Scholar 

  42. 42.

    Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C. & Ollat, N. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol. 194, 416–429 (2012).

    CAS  PubMed  Google Scholar 

  43. 43.

    Péret, B. et al. Auxin regulates aquaporin function to facilitate lateral root emergence. Nat. Cell Biol. 14, 991–998 (2012).

    PubMed  Google Scholar 

  44. 44.

    Deak, K. I. & Malamy, J. Osmotic regulation of root system architecture. Plant J. 43, 17–28 (2005).

    CAS  PubMed  Google Scholar 

  45. 45.

    Dinneny, J. R. Developmental responses to water and salinity in root systems. Annu. Rev. Cell Dev. Biol. 35, 239–257 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Rosales, M. A., Maurel, C. & Nacry, P. Abscisic acid coordinates dose-dependent developmental and hydraulic responses of roots to water deficit. Plant Physiol. 180, 2198–2211 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Vandeleur, R., Niemietz, C., Tilbrook, J. & Tyerman, S. D. Role of aquaporins in root responses to irrigation. Plant Soil 274, 141–161 (2005).

    CAS  Google Scholar 

  48. 48.

    Hachez, C. et al. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant Cell Environ. 35, 185–198 (2012).

    CAS  PubMed  Google Scholar 

  49. 49.

    Caldeira, C. F., Jeanguenin, L., Chaumont, F. & Tardieu, F. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Nat. Commun. 5, 5365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ramachandran, P., Wang, G., Augstein, F., de Vries, J. & Carlsbecker, A. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development 145, dev159202 (2018).

    PubMed  Google Scholar 

  51. 51.

    Rowe, J. H., Topping, J. F., Liu, J. & Lindsey, K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 211, 225–239 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Li, X., Chen, L., Forde, B. G. & Davies, W. J. The biphasic root growth response to abscisic acid in Arabidopsis involves interaction with ethylene and auxin signalling pathways. Front. Plant Sci. 8, 1493 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Moriwaki, T., Miyazawa, Y., Kobayashi, A. & Takahashi, H. Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 100, 25–34 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Bao, Y. et al. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc. Natl Acad. Sci. USA 111, 9319–9324 (2014).

    CAS  PubMed  Google Scholar 

  55. 55.

    von Wangenheim, D. et al. Early developmental plasticity of lateral roots in response to asymmetric water availability. Nat. Plants 6, 73–77 (2020).

    Google Scholar 

  56. 56.

    Orman-Ligeza, B. et al. The xerobranching response represses lateral root formation when roots are not in contact with water. Curr. Biol. 28, 3165–3173 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Tournaire-Roux, C. et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425, 393–397 (2003).

    CAS  PubMed  Google Scholar 

  58. 58.

    Sauter, M. Root responses to flooding. Curr. Opin. Plant Biol. 16, 282–286 (2013).

    PubMed  Google Scholar 

  59. 59.

    Yamauchi, T. et al. Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proc. Natl Acad. Sci. USA 116, 20770–20775 (2019).

    CAS  PubMed  Google Scholar 

  60. 60.

    Eysholdt-Derzso, E. & Sauter, M. Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiol. 175, 412–423 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Waidmann, S. et al. Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nat. Commun. 10, 3540 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Shabala, S., Shabala, L., Barcelo, J. & Poschenrieder, C. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ. 37, 2216–2233 (2014).

    CAS  PubMed  Google Scholar 

  63. 63.

    Yuan, F. et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371 (2014).

    CAS  PubMed  Google Scholar 

  64. 64.

    Hamilton, E. S. et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350, 438–441 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Martiniere, A. et al. Osmotic stress activates two reactive oxygen species pathways with distinct effects on protein nanodomains and diffusion. Plant Physiol. 179, 1581–1593 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Shkolnik, D., Nuriel, R., Bonza, M. C., Costa, A. & Fromm, H. MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+ signal essential for root water tracking in Arabidopsis. Proc. Natl Acad. Sci. USA 115, 8031–8036 (2018).

    CAS  PubMed  Google Scholar 

  67. 67.

    Puertolas, J., Conesa, M. R., Ballester, C. & Dodd, I. C. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. J. Exp. Bot. 66, 2325–2334 (2015).

    CAS  PubMed  Google Scholar 

  68. 68.

    McLean, E. H., Ludwig, M. & Grierson, P. F. Root hydraulic conductance and aquaporin abundance respond rapidly to partial root-zone drying events in a riparian Melaleuca species. New Phytol. 192, 664–675 (2011).

    CAS  PubMed  Google Scholar 

  69. 69.

    Takahashi, F. et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556, 235–238 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Robbins, N. E. II & Dinneny, J. R. Growth is required for perception of water availability to pattern root branches in plants. Proc. Natl Acad. Sci. USA 115, E822–E831 (2018).

    CAS  PubMed  Google Scholar 

  71. 71.

    Dietrich, D. et al. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 3, 17057 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Orosa-Puente, B. et al. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science 362, 1407–1410 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Holdsworth, M. J., Vicente, J., Sharma, G., Abbas, M. & Zubrycka, A. The plant N-degron pathways of ubiquitin-mediated proteolysis. J. Integr. Plant Biol. 62, 70–89 (2019).

    PubMed  Google Scholar 

  74. 74.

    Hartman, S. et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 10, 4020 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Eysholdt-Derzso, E. & Sauter, M. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biol. 21 (Suppl. 1), 103–108 (2019).

    CAS  PubMed  Google Scholar 

  76. 76.

    Shukla, V. et al. Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis. Mol. Plant 12, 538–551 (2019).

    CAS  PubMed  Google Scholar 

  77. 77.

    Char, S. N. et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 15, 257–268 (2017).

    CAS  PubMed  Google Scholar 

  78. 78.

    Wang, X. et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233–1241 (2016).

    CAS  PubMed  Google Scholar 

  79. 79.

    Mao, H. et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 8326 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported in part by the Agence Nationale de la Recherche (ANR-11-BSV6-018) and the European Research Council (ERC-2017-ADG-788553).

Author information




C.M. wrote this article, which was discussed with and corrected by P.N.

Corresponding author

Correspondence to Christophe Maurel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Malcolm Bennett and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maurel, C., Nacry, P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat. Plants 6, 744–749 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing