Syndromes of production in intercropping impact yield gains


Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16–29% of the land and 19–36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic illustrations and examples of alternative intercropping strategies.
Fig. 2: NEs of various types of intercropping and the associations with TND and fertilizer inputs.
Fig. 3: TND, fertilizer inputs and yield levels of intercrops with and without maize.
Fig. 4: Spatial arrangements, species selection and geographic origin of intercrops with and without maize.
Fig. 5: Principal component analysis of the associations between yield gain and intercropping design and management.
Fig. 6: Land and fertilizer savings of intercropping.

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The R code used for the analysis is available from the corresponding author on reasonable request.


  1. 1.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Cassman, K. G. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Willey, R. W. Resource use in intercropping systems. Agric. Water Manage. 17, 215–231 (1990).

    Article  Google Scholar 

  6. 6.

    Vandermeer, J. H. The Ecology of Intercropping (Cambridge Univ. Press, 1989).

  7. 7.

    Ren, W. Z. et al. Can positive interactions between cultivated species help to sustain modern agriculture? Front. Ecol. Environ. 12, 507–514 (2014).

    Article  Google Scholar 

  8. 8.

    Martin-Guay, M. O., Paquette, A., Dupras, J. & Rivest, D. The new green revolution: sustainable intensification of agriculture by intercropping. Sci. Total Environ. 615, 767–772 (2018).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Liebman, M. & Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3, 92–122 (1993).

    PubMed  Article  Google Scholar 

  10. 10.

    Trenbath, B. Intercropping for the management of pests and diseases. Field Crops Res. 34, 381–405 (1993).

    Article  Google Scholar 

  11. 11.

    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Zhang, L. et al. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res. 107, 29–42 (2008).

    Article  Google Scholar 

  13. 13.

    Mao, L. L. et al. Yield advantage and water saving in maize/pea intercrop. Field Crops Res. 138, 11–20 (2012).

    Article  Google Scholar 

  14. 14.

    Yang, C., Huang, G., Chai, Q. & Luo, Z. Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China. Field Crops Res. 124, 426–432 (2011).

    Article  Google Scholar 

  15. 15.

    Tan, M. et al. Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercropping: model development and application to wheat–maize intercropping. Field Crops Res. 246, 107613 (2020).

    Article  Google Scholar 

  16. 16.

    Hauggaard-Nielsen, H. et al. Pea–barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Res. 113, 64–71 (2009).

    Article  Google Scholar 

  17. 17.

    Jensen, E. S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea–barley intercrops. Plant Soil 182, 25–38 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    Cong, W. F. et al. Intercropping enhances soil carbon and nitrogen. Glob. Change Biol. 21, 1715–1726 (2015).

    Article  Google Scholar 

  19. 19.

    Li, L. et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl Acad. Sci. USA 104, 11192–11196 (2007).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Li, C. et al. Crop diversity for yield increase. PLoS ONE 4, e8049 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. 21.

    Bedoussac, L. et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: a review. Agron. Sustain. Dev. 35, 911–935 (2015).

    Article  Google Scholar 

  22. 22.

    Mead, R. & Willey, R. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp. Agric. 16, 217–228 (1980).

    Article  Google Scholar 

  23. 23.

    Yu, Y., Stomph, T.-J., Makowski, D. & van der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Res. 184, 133–144 (2015).

    Article  Google Scholar 

  24. 24.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Li, L., Zhang, L. & Zhang, F. in Encyclopedia of Biodiversity 2nd edn (ed. Levin, S.A.) 382–395 (Academic Press, 2013).

  26. 26.

    Lithourgidis, A., Dordas, C., Damalas, C. A. & Vlachostergios, D. Annual intercrops: an alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 5, 396–410 (2011).

    Google Scholar 

  27. 27.

    Hong, Y. et al. Intercropping and agroforestry in China—current state and trends. Agric. Ecosyst. Environ. 244, 52–61 (2017).

    Article  Google Scholar 

  28. 28.

    Gou, F. et al. On yield gaps and yield gains in intercropping: opportunities for increasing grain production in northwest China. Agric. Syst. 151, 96–105 (2017).

    Article  Google Scholar 

  29. 29.

    Xu, Z. et al. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis. Field Crops Res. 246, 107661 (2020).

    Article  Google Scholar 

  30. 30.

    Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol. 206, 106–117 (2015).

    Article  Google Scholar 

  31. 31.

    Voisin, A. S. et al. Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron. Sustain. Dev. 34, 361–380 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Barbieri, P., Pellerin, S. & Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 7, 13761 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. 33.

    Lithourgidis, A. S., Vasilakoglou, I. B., Dhima, K. V., Dordas, C. A. & Yiakoulaki, M. D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res. 99, 106–113 (2006).

    Article  Google Scholar 

  34. 34.

    Bedoussac, L. et al. in Organic Farming, Prototype for Sustainable Agricultures (eds. Bellon, S. & Penvern, S.) 47–63 (Springer, 2014).

  35. 35.

    Li, C. J. et al. Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. Eur. J. Agron. 113, 125987 (2020).

    Article  CAS  Google Scholar 

  36. 36.

    Hauggaard-Nielsen, H. & Jensen, E. S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Res. 72, 185–196 (2001).

    Article  Google Scholar 

  37. 37.

    Andow, D. A. & Hidaka, K. Experimental natural history of sustainable agriculture: syndromes of production. Agric. Ecosyst. Environ. 27, 447–462 (1989).

    Article  Google Scholar 

  38. 38.

    Vandermeer, J. Syndromes of production: an emergent property of simple agroecosystem dynamics. J. Environ. Manage. 51, 59–72 (1997).

    Article  Google Scholar 

  39. 39.

    Hong, Y., Heerink, N., Zhao, M. & van der Werf, W. Intercropping contributes to a higher technical efficiency in smallholder farming: evidence from a case study in Gaotai County, China. Agric. Syst. 173, 317–324 (2019).

    Article  Google Scholar 

  40. 40.

    Li, L. et al. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crops Res. 71, 123–137 (2001).

    Article  Google Scholar 

  41. 41.

    Liu, X. et al. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize–soybean strip intercropping. Field Crops Res. 224, 91–101 (2018).

    Article  Google Scholar 

  42. 42.

    Anten, N. & Hirose, T. Shoot structure, leaf physiology, and daily carbon gain of plant species in a tallgrass meadow. Ecology 84, 955–968 (2003).

    Article  Google Scholar 

  43. 43.

    Anten, N. & Hirose, T. Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. J. Ecol. 87, 583–597 (1999).

    Article  Google Scholar 

  44. 44.

    Fujita, K., Ofosubudu, K. G. & Ogata, S. Biological nitrogen-fixation in mixed legume–cereal cropping systems. Plant Soil 141, 155–175 (1992).

    CAS  Article  Google Scholar 

  45. 45.

    Knörzer, H., Graeff-Hönninger, S., Guo, B., Wang, P. & Claupein, W. in Climate Change, Intercropping, Pest Control and Beneficial Microorganisms (Ed. Lichtfouse, E.) 13–44 (Springer, 2009).

  46. 46.

    Du, J. B. et al. Maize–soybean strip intercropping: achieved a balance between high productivity and sustainability. J. Integr. Agric. 17, 747–754 (2018).

    Article  Google Scholar 

  47. 47.

    Ju, X. T. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Whitmore, A. P. & Schröder, J. J. Intercropping reduces nitrate leaching from under field crops without loss of yield: a modelling study. Eur. J. Agron. 27, 81–88 (2007).

    CAS  Article  Google Scholar 

  49. 49.

    Li, C. J. et al. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China. Plant Soil 342, 221–231 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Rusinamhodzi, L., Corbeels, M., Nyamangara, J. & Giller, K. E. Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 136, 12–22 (2012).

    Article  Google Scholar 

  51. 51.

    Raseduzzaman, M. & Jensen, E. S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33 (2017).

    Article  Google Scholar 

  52. 52.

    Peñuelas, J. & Filella, I. Responses to a warming world. Science 294, 793–795 (2001).

    PubMed  Article  Google Scholar 

  53. 53.

    Menzel, A. & Fabian, P. Growing season extended in Europe. Nature 397, 659 (1999).

    CAS  Article  Google Scholar 

  54. 54.

    Hu, F. L. et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412, 235–251 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    Hu, F. L. et al. Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. Field Crops Res. 198, 50–60 (2016).

    Article  Google Scholar 

  56. 56.

    Pelzer, E. et al. Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur. J. Agron. 40, 39–53 (2012).

    Article  Google Scholar 

  57. 57.

    Ngwira, A. R., Aune, J. B. & Mkwinda, S. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Res. 132, 149–157 (2012).

    Article  Google Scholar 

  58. 58.

    Viguier, L., Bedoussac, L., Journet, E.-P. & Justes, E. Yield gap analysis extended to marketable grain reveals the profitability of organic lentil–spring wheat intercrops. Agron. Sustain. Dev. 38, 39 (2018).

    Article  Google Scholar 

  59. 59.

    Iqbal, N. et al. Comparative analysis of maize–soybean strip intercropping systems: a review. Plant Prod. Sci. 22, 131–142 (2019).

    Article  Google Scholar 

  60. 60.

    Fletcher, A. L. et al. Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems. Crop Pasture Sci. 67, 1252–1267 (2017).

    Article  Google Scholar 

  61. 61.

    Wezel, A. et al. Agroecological practices for sustainable agriculture: a review. Agron. Sustain. Dev. 34, 1–20 (2014).

    Article  Google Scholar 

  62. 62.

    Chai, Q., Qin, A. Z., Gan, Y. T. & Yu, A. Z. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron. Sustain. Dev. 34, 535–543 (2014).

    CAS  Article  Google Scholar 

  63. 63.

    Stomph, T. et al. in Advances in Agronomy (ed. Donald, L.S.) Vol. 160, 1–50 (Academic Press, 2020).

  64. 64.

    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2014);

  65. 65.

    Pinheiro, J. et al. nlme: linear and nonlinear mixed effects models. R package version 3.1-147 (2020).

  66. 66.

    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).

  67. 67.

    Oksanen, J. et al. vegan: Community ecology package. R package version 2.4-3, (2017).

  68. 68.

    Gaudio, N. et al. Current knowledge and future research opportunities for modeling annual crop mixtures: a review. Agron. Sustain. Dev. 39, 20 (2019).

    Article  Google Scholar 

Download references


We acknowledge funding from the Chinese National Basic Research Program (grant no. 2015CB150400) and the National Key R&D Program of China (grant no. 2017YFD0200200/2017YFD0200207). We also acknowledge the financial support of the Wageningen University Sandwich Scholarship. We acknowledge funding from the European Union’s Horizon 2020 Programme for Research & Innovation under grant agreement no. 727217 ( We also thank L. Bedoussac, L. Viguier, J. Du and W. Yang for providing the photographs included in Fig. 1.

Author information




C.L., E.H., T.W.K., C.Z., H.L., F.Z. and W.v.d.W. designed the study. C.L. and Y.Y. collected the data. C.L. and W.v.d.W. performed the statistical analyses and led the writing of the manuscript. All authors reviewed the manuscript and contributed to the interpretation and manuscript revisions.

Corresponding authors

Correspondence to Fusuo Zhang or Wopke van der Werf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Frederick Stoddard, David Tilman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hoffland, E., Kuyper, T.W. et al. Syndromes of production in intercropping impact yield gains. Nat. Plants 6, 653–660 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing