Puzzling out plant reproduction by haploid induction for innovations in plant breeding

Abstract

Mixing maternal and paternal genomes in embryos is not only responsible for the evolutionary success of sexual reproduction, but is also a cornerstone of plant breeding. However, once an interesting gene combination is obtained, further genetic mixing is problematic. To rapidly fix genetic information, doubled haploid plants can be produced: haploid embryos having solely the genetic information from one parent are allowed to develop, and chromosome doubling generates fully homozygous plants. A powerful path to the production of doubled haploids is based on haploid inducer lines. A simple cross between a haploid inducer line and the line with gene combinations to be fixed will trigger haploid embryo development. However, the exact mechanism behind in planta haploid induction remains an enduring mystery. The recent discoveries of molecular actors triggering haploid induction in the maize crop and the model Arabidopsis thaliana pinpoint an essential role of processes related to gamete development, gamete interactions and genome stability. These findings enabled translation of haploid induction capacity to other crops as well as the use of haploid inducer lines to deliver genome editing machinery into various crop varieties. These recent advances not only hold promise for the next generations of plant breeding strategies, but they also provide a deeper insight into the fundamental bases of sexual reproduction in plants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hypothetical mechanistic model of in planta haploid induction in maize.
Fig. 2: Model of the uniparental chromosome elimination in the CENH3-based haploid inducer system.
Fig. 3: Example of trans editing using maize haploid inducer line.

References

  1. 1.

    Forster, B. P. & Thomas, W. T. B. in Plant Breeding Reviews (Ed. Janick, J.) 57–88 (John Wiley & Sons, 2005).

  2. 2.

    Wędzony, M. et al. in Advances in Haploid Production in Higher Plants (eds Touraev, A. et al.) 1–33 (Springer, 2009).

  3. 3.

    Gilles, L. M., Martinant, J.-P., Rogowsky, P. M. & Widiez, T. Haploid induction in plants. Curr. Biol. 27, R1095–R1097 (2017).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Doubled Haploid Production in Crop Plants: a Manual (eds Maluszynski, M. et al.) (Springer, 2003).

  5. 5.

    Dunwell, J. M. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J 8, 377–424 (2010).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Forster, B. P., Heberle-Bors, E., Kasha, K. J. & Touraev, A. The resurgence of haploids in higher plants. Trends Plant Sci. 12, 368–375 (2007).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Guha, S. & Maheshwari, S. C. In vitro production of embryos from anthers of Datura. Nature 204, 497–497 (1964).

  8. 8.

    Advances in Haploid Production in Higher Plants (eds Touraev, A. et al.) (Springer, 2009).

  9. 9.

    Haploids in Crop Improvement II (eds Palmer, C. E. D. et al.) (Springer, 2005).

  10. 10.

    Bajaj, Y. P. S. Haploids in Crop Improvement I Vol. 12 (Springer-Verlag, 1990).

  11. 11.

    In Vitro Haploid Production in Higher Plants (eds Jain, S. et al.) Vol. 25 (Springer, 1996).

  12. 12.

    Ishii, T., Karimi-Ashtiyani, R. & Houben, A. Haploidization via chromosome elimination: means and mechanisms. Annu. Rev. Plant Biol. 67, 421–438 (2016).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Kalinowska, K. et al. State-of-the-art and novel developments of in vivo haploid technologies. Theor. Appl. Genet. 132, 593–605 (2019).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Kermicle, J. L. Androgenesis conditioned by a mutation in maize. Science 166, 1422–1424 (1969).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Coe, E. H. A line of maize with high haploid frequency. The American Naturalist 93, 381–382 (1959).

    Article  Google Scholar 

  16. 16.

    Rober, F. K., Gordillo, G. A. & Geiger, H. H. In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50, 275 (2005).

    Google Scholar 

  17. 17.

    Geiger, H. H. & Gordillo, G. A. Doubled haploids in hybrid maize breeding. Maydica 54, 485–499 (2009).

    Google Scholar 

  18. 18.

    Sarkar, K. R. & Coe, E. H. A genetic analysis of the origin of maternal haploids in maize. Genetics 54, 453–464 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Barret, P., Brinkmann, M. & Beckert, M. A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor. Appl. Genet. 117, 581–594 (2008).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Hu, H. et al. The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics 202, 1267–1276 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Prigge, V. et al. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190, 781–793 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Gilles, L. M. et al. Loss of pollen‐specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 36, 707–717 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Kelliher, T. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542, 105–109 (2017).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Liu, C. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol. Plant 10, 520–522 (2017).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Zhong, Y. et al. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants 5, 575–580 (2019).

    PubMed  Article  Google Scholar 

  26. 26.

    Ravi, M. & Chan, S. W. L. Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615–618 (2010).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Tan, E. H. et al. Catastrophic chromosomal restructuring during genome elimination in plants. eLife 4, e06516 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Kelliher, T. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front. Plant Sci. 7, 414 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Maheshwari, S. et al. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet. 11, e1004970 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Karimi-Ashtiyani, R. et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Natl Acad. Sci. USA 112, 11211–11216 (2015).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kuppu, S. et al. Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLoS Genet. 11, e1005494 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Britt, A. B. & Kuppu, S. Cenh3: an emerging player in haploid induction technology. Front. Plant Sci. 7, 357 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Kuppu, S. et al. A variety of changes, including CRISPR/Cas9 mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotech. J. (in the press).

  34. 34.

    van Dun, C., Lelivelt, C. & Movahedi, S. Non-transgenic haploid inducer lines in cucurbits. Worldwide patent WO/2017/081009A1 (2017).

  35. 35.

    Op Den Camp, R. H. M., Van Dijk, P. J. & Gallard, A. Method for the production of haploid and subsequent doubled haploid plants. Worldwide patent WO/2017/200386 (2017).

  36. 36.

    Bohra, A., Jha, U. C., Adhimoolam, P., Bisht, D. & Singh, N. P. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 35, 967–993 (2016).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Li, L., Xu, X., Jin, W. & Chen, S. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 230, 367–376 (2009).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Zhang, Z. et al. Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep. 27, 1851–1860 (2008).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Zhao, X., Xu, X., Xie, H., Chen, S. & Jin, W. Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol. 163, 721–731 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Qiu, F. et al. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize. Curr. Plant Biol. 1, 83–90 (2014).

    Article  Google Scholar 

  41. 41.

    Wedzony, M., Röber, F. & Geiger, H. Chromosome elimination observed in selfed progenies of maize inducer line RWS. in XVIIth International Congress on Sex Plant Reproduction 173 (2002).

  42. 42.

    Liu, L. et al. In vivo haploid induction leads to increased frequency of twin-embryo and abnormal fertilization in maize. BMC Plant Biol. 18, 313 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Bylich, V. & Chalyk, S. Existence of pollen grains with a pair of morphologically different sperm nuclei as a possible cause of the haploid-inducing capacity in ZMS line. Maize Genetics Cooperation Newsletter 70, 33 (1996).

    Google Scholar 

  44. 44.

    Chalyk, S., Baumann, A., Daniel, G. & Eder, J. Aneuploidy as a possible cause of haploid-induction in maize. Maize Genetics Cooperation Newsletter 77, 29–30 (2003).

    Google Scholar 

  45. 45.

    Tian, X. et al. Hetero-fertilization together with failed egg–sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize. J. Exp. Bot. 69, 4689–4701 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Li, X. et al. Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nat. Commun. 8, 991 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Swapna, M. & Sarkar, K. R. Anomalous fertilization in haploidy inducer lines in maize (Zea mays L). Maydica 56, 1717 (2012).

    Google Scholar 

  48. 48.

    Mahendru, A. & Sarkar, K. R. Cytological analysis of the pollen of haploidy inducer lines in maize (Zea mays L.). Indian. J. Genet. Pl. Br. 60, 37–43 (2000).

    Google Scholar 

  49. 49.

    Jackson, D. No sex please, we’re (in)breeding. EMBO J. 36, 703–704 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Cyprys, P., Lindemeier, M. & Sprunck, S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat. Plants 5, 253–257 (2019).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Takahashi, T. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development 145, dev170076 (2018).

  52. 52.

    Liu, C. et al. Fine mapping of qhir8 affecting in vivo haploid induction in maize. Theor. Appl. Genet. 128, 2507–2515 (2015).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Schlupp, I. The evolutionary ecology of gynogenesis. Annu. Rev. Ecol. Evol. Syst. 36, 399–417 (2005).

    Article  Google Scholar 

  54. 54.

    Watts, A., Kumar, V. & Bhat, S. R. Centromeric histone H3 protein: from basic study to plant breeding applications. J. Plant Biochem. Biotechnol. 25, 339–348 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Wang, N. & Dawe, R. K. Centromere size and its relationship to haploid formation in plants. Mol. Plant 11, 398–406 (2018).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Comai, L. & Tan, E. H. Haploid induction and genome instability. Trends Genet. 35, 791–803 (2019).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Sanei, M., Pickering, R., Kumke, K., Nasuda, S. & Houben, A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Natl Acad. Sci. USA 108, E498–E505 (2011).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Gao, C. The future of CRISPR technologies in agriculture. Nat. Rev. Mol. Cell Biol. 19, 275–276 (2018).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotech. 37, 287–292 (2019).

    CAS  Article  Google Scholar 

  60. 60.

    Wang, B. et al. Development of a Haploid-inducer mediated genome editing system for accelerating maize breeding. Mol. Plant 12, 597–602 (2019).

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    d’Erfurth, I. et al. Turning meiosis into mitosis. PLoS Biol. 7, e1000124 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Mieulet, D. et al. Turning rice meiosis into mitosis. Cell Res. 26, 1242–1254 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Wang, C. et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotech. 37, 283 (2019).

    CAS  Article  Google Scholar 

  64. 64.

    Qu, Y. et al. Mapping of QTL for kernel abortion caused by in vivo haploid induction in maize (Zea mays L.). PLoS ONE 15, e0228411 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Yao, L. et al. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 4, 530–533 (2018).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Liu, C. et al. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J. 18, 316–318 (2020).

    PubMed  Article  Google Scholar 

  67. 67.

    Liu, H. et al. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot. 71, 1337–1349 (2020).

    PubMed  Article  Google Scholar 

  68. 68.

    Prasanna, B., Chaikam, V. & Mahuku, G. Doubled Haploid Technology in Maize Breeding: Theory and Practice (CIMMYT, 2012).

  69. 69.

    Chaikam, V., Gowda, M., Nair, S. K., Melchinger, A. E. & Boddupalli, P. M. Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. Euphytica 215, 138 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Ren, J., Wu, P., Tian, X., Lübberstedt, T. & Chen, S. QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. Theor. Appl. Genet. 130, 1349–1359 (2017).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Yang, J. et al. Genetic dissection of haploid male fertility in maize (Zea mays L.). Plant Breeding 138, 259–265 (2019).

    CAS  Article  Google Scholar 

  72. 72.

    Ren, J. et al. Mapping of QTL and identification of candidate genes conferring spontaneous haploid genome doubling in maize (Zea mays L.). Plant Sci. 293, 110337 (2020).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Boerman, N. A., Frei, U. K. & Lübberstedt, T. Impact of spontaneous haploid genome doubling in maize breeding. Plants 9, 369 (2020).

    PubMed Central  Article  Google Scholar 

  74. 74.

    Begheyn, R. F., Vangsgaard, K., Roulund, N. & Studer, B. In Breeding in a World of Scarcity (eds Roldán-Ruiz, I. et al.) 151–155 (Springer, 2016).

  75. 75.

    Dong, Y.-Q. et al. Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Rep. 35, 1991–2019 (2016).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Hussain, T. & Franks, C. in Sorghum Vol. 1931 (eds Zhao, Z.-Y. & Dahlberg, J.) 49–59 (Springer, 2019).

  77. 77.

    Kloiber-Maitz, M., Wieckhorst, S., Bolduan, C. & Ouzunova, M. Haploidisierung in sorghum. European patent EP3366778A1 (2018).

Download references

Acknowledgements

We apologize to authors whose research could not be discussed here due to space restrictions. We thank M. Bodin and M. Philippot for their help with Table 1. We also thank J. Xicluna and O. Hamant for the critical reading of the abstract. This research was supported by the ANR grant (no. ANR-19-CE20-0012) to T.W., and by pack ambition recherche from the Région Auvergne-Rhone-Alpes (HD-INNOV) to T.W. N.M.A.J. and L.M.G. were supported by CIFRE PhD fellowships from ANRT funding agency (grant nos. 2019/0771 and 2015/0777, respectively).

Author information

Affiliations

Authors

Contributions

T.W. led the writing of the manuscript. N.M.A.J., D.E.P. and T.W. contributed to the critical reading of the manuscript, provided suggestions and contributed to the writing of specific sections. L.M.G., P.M.R. and J.-P.M. contributed to the critical reading of the manuscript and provided suggestions. L.M.G. composed the figures with help from N.M.A.J. T.W. initiated and coordinated the project.

Corresponding author

Correspondence to Thomas Widiez.

Ethics declarations

Competing interests

N.M.A.J, L.M.G. and J.-P.M. are employees of LIMAGRAIN Europe. The authors also have pending patent applications (PCT/EP2016/060202 (published as WO2016177887) and EP3091076).

Additional information

Peer review information Nature Plants thanks Andreas Houben, Weicai Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jacquier, N.M.A., Gilles, L.M., Pyott, D.E. et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6, 610–619 (2020). https://doi.org/10.1038/s41477-020-0664-9

Download citation