Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple origins of dichotomous and lateral branching during root evolution

Abstract

Roots of extant vascular plants proliferate through lateral branching (euphyllophytes) or dichotomy (lycophytes)1,2,3,4. The origin of these distinct modes of branching was key for plant evolution because they enabled the development of structurally and functionally different root systems that supported a diversity of shoot systems3,4,5,6. It has been unclear when lateral branching originated and how many times it evolved4,7,8. Here, we report that many euphyllophytes that were extant during the Devonian and Carboniferous periods developed dichotomous roots. Our data indicate that dichotomous root branching evolved in both lycophytes and euphyllophytes. Lateral roots then evolved at different times in three major lineages of extant euphyllophytes—the lignophytes, ferns and horsetails. The multiple origins of dichotomous and lateral root branching are extreme cases of convergent evolution that occurred during the Devonian and Carboniferous periods when the land-plant flora underwent a radiation in morphological diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences between lateral and dichotomous root branching.
Fig. 2: Dichotomous root branching in L. goense.
Fig. 3: Multiple origins of dichotomous and lateral branching during root evolution.

Similar content being viewed by others

Data availability

The paratype ULG 2057a and ULG 2057b of L. goense is housed in the collections of the University of Liège, Belgium. All other data supporting the findings of this study are included in the paper and its Supplementary Information.

References

  1. Bierhorst, D. W. Morphology of Vascular Plants (Macmillan, 1971).

  2. Hetherington, A. J. & Dolan, L. The evolution of lycopsid rooting structures: conservatism and disparity. New Phytol. 215, 538–544 (2017).

    PubMed  Google Scholar 

  3. Motte, H. & Beeckman, T. The evolution of root branching: increasing the level of plasticity. J. Exp. Bot. 70, 785–793 (2019).

    CAS  PubMed  Google Scholar 

  4. Boyce, C. K. in Vascular Transport in Plants (eds Holbrook, N. M. & Zwieniecki, M. A.) 479–500 (Elsevier Academic Press, 2005).

  5. Algeo, T. J. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Proc. R. Soc. B 353, 113–130 (1998).

  6. Fitter, A. H., Stickland, T. R., Harvey, M. L. & Wilson, G. W. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol. 118, 375–382 (1991).

    Google Scholar 

  7. Raven, J. A. & Edwards, D. Roots: evolutionary origins and biogeochemical significance. J. Exp. Bot. 52, 381–401 (2001).

    CAS  PubMed  Google Scholar 

  8. Kenrick, P. in Plant Roots: The Hidden Half (eds Eshel, A. & Beeckamn, T.) 1–14 (Taylor & Francis, 2013).

  9. Kenrick, P. & Crane, P. R. The Origin and Early Diversification of Land Plants: A Cladistic Study (Smithsonian Institute Press, 1997).

  10. Gensel, P. G., Kotyk, M. E. & Brasinger, J. F. in Plants Invade The Land: Evolutionary and Environmental Perspectives (eds Gensel, P. G. & Edwards, D.) 83–102 (Columbia Univ. Press, 2001).

  11. Hetherington, A. J. & Dolan, L. Stepwise and independent origins of roots among land plants. Nature 561, 235–238 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Banks, H., Leclercq, S. & Hueber, F. M. Anatomy and morphology of Psilophyton dawsonii, sp. n. from the late Lower Devonian of Quebec (Gaspé) and Ontario, Canada. Palaeontogr. Am. 8, 75–127 (1975).

    Google Scholar 

  13. Doran, J. B. A new species of Psilophyton from the Lower Devonian of northern New Brunswick, Canada. Can. J. Bot. 58, 2241–2262 (1980).

    Google Scholar 

  14. Hao, S.-G. & Beck, C. B. Further observations on Eophyllophyton bellum from the Lower Devonian (Siegenian) of Yunnan, China. Palaeontogr. Abt. B 230, 27–41 (1993).

    Google Scholar 

  15. Friedman, W. E., Moore, R. C. & Purugganan, M. D. The evolution of plant development. Am. J. Bot. 91, 1726–1741 (2004).

    PubMed  Google Scholar 

  16. Rothwell, G. W. Fossils and ferns in the resolution of land plant phylogeny. Bot. Rev. 65, 188–218 (1999).

    Google Scholar 

  17. PPG I A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 54, 563–603 (2016).

    Google Scholar 

  18. Gola, E. M. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation. Front. Plant Sci. 5, 263 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Fairon-Demaret, M. & Li, C.-S. Lorophyton goense gen. et sp. nov. from the Lower Givetian of Belgium and a discussion of the Middle Devonian Cladoxylopsida. Rev. Palaeobot. Palynol. 77, 1–22 (1993).

    Google Scholar 

  20. Hetherington, A. J., Berry, C. M. & Dolan, L. Networks of highly branched stigmarian rootlets developed on the first giant trees. Proc. Natl Acad. Sci. USA 113, 6695–6700 (2016).

    CAS  PubMed  Google Scholar 

  21. Toledo, S., Bippus, A. C. & Tomescu, A. M. F. Buried deep beyond the veil of extinction: euphyllophyte relationships at the base of the spermatophyte clade. Am. J. Bot. 105, 1264–1285 (2018).

    PubMed  Google Scholar 

  22. Stein, W. E., Berry, C. M., Hernick, L. V. & Mannolini, F. Surprisingly complex community discovered in the Mid-Devonian fossil forest at Gilboa. Nature 483, 78–81 (2012).

    CAS  PubMed  Google Scholar 

  23. Scheckler, S. E. Progymnosperms have gymnospermous roots. In Proc. The Evolution of Plant Architecture. Programme and Abstracts (eds. Hemsley, A. R. & Kurmann, M. H.) 31 (Linnean Society and Royal Botanic Gardens, Kew, 1995).

  24. Algeo, T. J., Scheckler, S. E. & Maynard, J. B. in Plants Invade The Land (eds Gensel, P. G. & Edwards, D.) 213–236 (Columbia Univ. Press, 2001).

  25. Meyer-Berthaud, B., Decombeix, A.-L. & Ermacora, X. Archaeopterid root anatomy and architecture: new information from permineralized specimens of Famennian age from Anti-Atlas (Morocco). Int. J. Plant Sci. 174, 364–381 (2013).

    Google Scholar 

  26. Stein, W. E. et al. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30, 421–431 (2020).

    PubMed  Google Scholar 

  27. Snigirevskaya, N. S. Root system of Archaeopteris, Upper Devonian, Donbass. Ann. J. Paleontol. Soc. Acad. Sci. USSR 27, 28–41 (1984).

    Google Scholar 

  28. Beck, C. B. Eddya sullivanesis, gen. et sp. nov., a plant of gymnospermic morphology from the Upper Devonian of New York. Palaeontogr. Abt. B 121, 1–22 (1967).

    Google Scholar 

  29. Gerrienne, P., Servais, T. & Vecoli, M. Plant evolution and terrestrialization during Palaeozoic times—the phylogenetic context. Rev. Palaeobot. Palynol. 227, 4–18 (2016).

    Google Scholar 

  30. Cascales-Miñana, B., Steemans, P., Servais, T., Lepot, K. & Gerrienne, P. An alternative model for the earliest evolution of vascular plants. Lethaia 52, 445–453 (2019).

    Google Scholar 

  31. Harris, T. M. Schizopodium davidi gen. et sp. nov.—a new type of stem from the Devonian rocks of Australia. Phil. Trans. R. Soc. B 217, 395–410 (1929).

    Google Scholar 

  32. Hueber, F. M. Astralocaulis: a new name for Schizopodium Harris. Taxon 20, 640–641 (1971).

    Google Scholar 

  33. Xue, J. & Hao, S. Denglongia hubeiensis gen. et sp. nov., a new plant attributed to Cladoxylopsida from the Upper Devonian (Frasnian) of South China. Int. J. Plant Sci. 169, 1314–1331 (2008).

    Google Scholar 

  34. Wang, Y. First discovery of Eviostachya hoegii Stockmans from Wutung Formation in China. Acta Palaeontol. Sin. 32, 430–441 (1993).

    Google Scholar 

  35. Chaphekar, M. Studies of Some Carboniferous Petrified Plants. PhD thesis, Imperial College London (1963).

  36. Phillips, T. L. A new sphenophyllalean shoot system from the Pennsylvanian. Ann. Mo. Bot. Gard. 46, 1–17 (1959).

    Google Scholar 

  37. Baxter, R. W. A study of the vegetative anatomy of the genus Sphenophyllum from American coal balls. Ann. Mo. Bot. Gard. 35, 209–231 (1948).

    Google Scholar 

  38. Bateman, R. M. Palaeobiological and phylogenetic implications of anatomically-preserved Archaeocalamites from the Dinantian of Oxroad Bay and Loch Humphrey Burn, southern Scotland. Palaeontogr. Abt. B 223, 1–59 (1991).

    Google Scholar 

  39. Chaphekar, M. Some calamitean plants from the Lower Carbonifeorus of Scotland. Palaeontology 6, 408–429 (1963).

    Google Scholar 

  40. Eggert, D. A. The ontogeny of Carboniferous arborescent Sphenopsida. Palaeontogr. Abt. B 110, 99–127 (1962).

    Google Scholar 

  41. Williamson, W. C. & Scott, D. H. X. V. I. Further observations on the organization of the fossil plants of the coal-measures. —Part II. The roots of Calamites. Phil. Trans. R. Soc. B 186, 683–701 (1895).

    Google Scholar 

  42. Leclercq, S. Étude morphologique et anatomique d’une fougère du Dévonien supérieur: le Rhacophyton zygopteroides nov. sp. Ann. Soc. Geol. Bel. 9, 1–62 (1951).

    Google Scholar 

  43. Cornet, B., Phillips, T. & Andrews, H. N. The morphology and variation in Rhacophyton ceratangium from the Upper Devonian and its bearing on frond evolution. Palaeontogr. Abt. B 158, 105–129 (1976).

    Google Scholar 

  44. Hueber, F. M. & Galtier, J. Symplocopteris wyattii n. gen. et n. sp.: a zygopterid fern with a false trunk from the Tournaisian (Lower Carboniferous) of Queensland, Australia. Rev. Palaeobot. Palynol. 119, 241–273 (2002).

    Google Scholar 

  45. Phillips, T. L. & Galtier, J. Evolutionary and ecological perspectives of Late Paleozoic ferns. Rev. Palaeobot. Palynol. 135, 165–203 (2005).

    Google Scholar 

  46. Dennis, R. L. Studies of Paleozoic ferns: Zygopteris from the Middle and Late Pennsylvanian of the United States. Palaeontogr. Abt. B 148, 95–136 (1974).

    Google Scholar 

  47. Ehret, D. L. & Phillips, T. L. Psaronius root systems—morphology and development. Palaeontogr. Abt. B 161, 147–164 (1977).

    Google Scholar 

  48. Delevoryas, T. & Morgan, J. Tubicaulis multiscalariformis: a new American coenopterid. Am. J. Bot. 39, 160–166 (1952).

    Google Scholar 

  49. Mamay, S. H. An epiphytic American species of Tubicaulis Cotta. Ann. Bot. 16, 145–147 (1952).

    Google Scholar 

  50. Mickle, J. E. Ankyropteris from the Pennsylvanian of eastern Kentucky. Bot. Gaz. 141, 230–243 (1980).

    Google Scholar 

  51. Holden, H. S. On the structure and affinities of Ankyropteris corrugata. Phil. Trans. R. Soc. B 218, 79–113 (1930).

    Google Scholar 

  52. Mamay, S. H. & Andrews, H. N. A contribution to our knowledge of the anatomy of Botryopteris. Bull. Torre. Bot. Club 77, 462–494 (1950).

    Google Scholar 

  53. Brosier, M. S. A Study on Botryopteris forensis and Botryopteris tridentata from the West Mineral, Kansas and What Cheer, Iowa Localities. MSc thesis, Univ. Alberta (1976).

  54. Surange, K. R. Botryopteris elliptica sp. nov. from the Upper Carboniferous of England. Palaeobotanist 3, 79–86 (1954).

    Google Scholar 

  55. Driese, S. G., Mora, C. I. & Elick, J. M. Morphology and taphonomy of root and stump casts of the earliest trees (Middle to Late Devonian), Pennsylvania and New York, U.S.A. Palaios 12, 524–537 (1997).

    Google Scholar 

  56. Walton, J. On the structure of a silicified stem of Protopitys and roots associated with it from the Carboniferous Limestone, Lower Carboniferous (Mississippian) of Yorkshire, England. Am. J. Bot. 56, 808–813 (1969).

    Google Scholar 

  57. Decombeix, A.-L., Letellier, D. & Meyer-Berthaud, B. Whose roots are these? Linking anatomically preserved lignophyte roots and stems from the Early Carboniferous of Montagne Noire, France. Int. J. Plant Sci. 178, 42–56 (2017).

    Google Scholar 

  58. Osborn, T. G. B. The lateral roots of Amyelon radicans, Will., and their mycorhiza. Ann. Bot. 23, 603–611 (1909).

    Google Scholar 

  59. Halket, A. C. The rootlets of ‘Amyelon radicans’, Will.; their anatomy, their apices and their endophytic fungus. Ann. Bot. 44, 865–905 (1930).

    Google Scholar 

  60. Cridland, A. A. Amyelon in American coal-balls. Palaeontology 7, 186–209 (1964).

    Google Scholar 

  61. Barnard, P. D. W. Revision of the genus Amyelon Williamson. Palaeontology 5, 213–224 (1962).

    Google Scholar 

  62. Benson, M. The roots and habit of Heterangium grievii. Ann. Bot. 47, 313–315 (1933).

    Google Scholar 

  63. Williamson, W. C. & Scott, D. H. III. Further observations on the organisation of the fossil plants of the coal-measures. Part III. Lyginodendron and Heterangium. Proc. R. Soc. Lond. 58, 195–204 (1895).

    Google Scholar 

  64. Halket, A. C. A note on the origin of lateral roots and the structure of the root-apex of Lyginopteris oldhamia. New Phytol. 31, 279–283 (1932).

    Google Scholar 

  65. Weiss, F. E. The root-apex and young root of Lyginodendron. Mem. Proc. Manch. Lit. Philos. Soc. 57, 1–10 (1913).

    Google Scholar 

  66. Arber, E. A. N. On the root of Medullosa anglica. Ann. Bot. 17, 425–434 (1903).

    Google Scholar 

  67. Rothwell, G. W. & Whiteside, K. L. Rooting structures of the Carboniferous medullosan pteridosperms. Can. J. Bot. 52, 97–102 (1974).

    Google Scholar 

  68. Scott, D. H. On the structure and affinities of fossil plants from the Palaeozoic Rocks. III. On Medullosa anglica, a new representative of the cycadofilices. Phil. Trans. R. Soc. B 191, 81–126 (1899).

    Google Scholar 

  69. Matten, L. C. The Cairo flora (Givetian) from eastern New York. I. Reimannia, terete axes, and Cairoa lamanekii gen. et sp. n. Am. J. Bot. 60, 619–630 (1973).

    Google Scholar 

  70. Li, C.-S. & Hsü, J. Studies on a new Devonian plant Protopteridophyton devonicum assigned to primative fern from South China. Palaeontogr. Abt. B 207, 111–131 (1987).

    Google Scholar 

  71. Stockmans, F. Végétaux du Dévonien Supérieur de la Belgique. Memoir. Mus. Natl Hist. Bel. 110, 1–85 (1948).

    Google Scholar 

  72. Cressler, W. L., Prestianni, C. & LePage, B. A. Late Devonian spermatophyte diversity and paleoecology at Red Hill, north-central Pennsylvania, USA. Int. J. Coal Geol. 83, 91–102 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

A.J.H. thanks C. Prestianni for help and hospitality while examining the collections of The University of Liège, as well as L. Ji and S. Snigirevsky for assistance with translation. A.J.H. was funded by the George Grosvenor Freeman Fellowship by Examination in Sciences, Magdalen College (Oxford); L.D. by a European Research Council Advanced Grant (EVO500, contract 250284), European Commission Framework 7 Initial Training Network (PLANTORIGINS, project identifier 238640) and European Research Council Grant (De NOVO-P, contract 787613); and C.M.B. by NERC grant NE/J007897/1.

Author information

Authors and Affiliations

Authors

Contributions

A.J.H. designed the project with advice from L.D. and C.M.B.; A.J.H. performed the analyses with assistance from C.M.B.; and A.J.H. and L.D. wrote the paper with comments from C.M.B.

Corresponding author

Correspondence to Alexander J. Hetherington.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Deming Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Reporting Summary

Supplementary Table

Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hetherington, A.J., Berry, C.M. & Dolan, L. Multiple origins of dichotomous and lateral branching during root evolution. Nat. Plants 6, 454–459 (2020). https://doi.org/10.1038/s41477-020-0646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0646-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing