Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments

An Author Correction to this article was published on 22 January 2021

An Author Correction to this article was published on 19 May 2020

This article has been updated


Potassium (K) is an essential nutrient, but levels of the free K ions (K+) in soil are often limiting, imposing a constant stress on plants. We have discovered a calcium (Ca2+)-dependent signalling network, consisting of two calcineurin B-like (CBL) Ca2+ sensors and a quartet of CBL-interacting protein kinases (CIPKs), which plays a key role in plant response to K+ starvation. The mutant plants lacking two CBLs (CBL2 and CBL3) were severely stunted under low-K conditions. Interestingly, the cbl2 cbl3 mutant was normal in K+ uptake but impaired in K+ remobilization from vacuoles. Four CIPKs—CIPK3, 9, 23 and 26—were identified as partners of CBL2 and CBL3 that together regulate K+ homeostasis through activating vacuolar K+ efflux to the cytoplasm. The vacuolar two-pore K+ (TPK) channels were directly activated by the vacuolar CBL–CIPK modules in a Ca2+-dependent manner, presenting a mechanism for the activation of vacuolar K+ remobilization that plays an important role in plant adaptation to K+ deficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: How cbl2 cbl3 mutant plants are hypersensitive to external K+ deficiency.
Fig. 2: K content in the cbl2 cbl3 mutant.
Fig. 3: A quartet of CIPKs functions downstream of CBL2/3 in plant adaptation to low-K conditions.
Fig. 4: Reduced vacuolar K+ inward current in various cbl and cipk mutants.
Fig. 5: Reconstitution of the vacuolar K+ efflux pathway consisting of TPK channels and CBL–CIPK modules.
Fig. 6: A working model depicting dual CBL–CIPK pathways in plant low-K response.

Data availability

All the data supporting the findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request.

Change history

  • 19 May 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 22 January 2021

    A Correction to this paper has been published:


  1. 1.

    Luan, S., Lan, W. Z. & Lee, S. C. Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network. Curr. Opin. Plant Biol. 12, 339–346 (2009).

    CAS  PubMed  Google Scholar 

  2. 2.

    Maathuis, F. J. M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258 (2009).

    CAS  PubMed  Google Scholar 

  3. 3.

    Ashley, M. K., Grant, M. & Grabov, A. Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 57, 425–436 (2006).

    CAS  PubMed  Google Scholar 

  4. 4.

    Wang, Y. & Wu, W. H. Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 64, 451–476 (2013).

    CAS  PubMed  Google Scholar 

  5. 5.

    Rubio, F., Aleman, F., Nieves-Cordones, M. & Martinez, V. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ uptake. Physiol. Plant. 139, 220–228 (2010).

    CAS  PubMed  Google Scholar 

  6. 6.

    Aleman, F., Nieves-Cordones, M., Martinez, V. & Rubio, F. Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol. 52, 1603–1612 (2011).

    CAS  PubMed  Google Scholar 

  7. 7.

    Pyo, Y. J., Gierth, M., Schroeder, J. I. & Cho, M. H. High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol. 153, 863–875 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Luan, S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 14, 37–42 (2009).

    CAS  PubMed  Google Scholar 

  9. 9.

    Tang, R. J., Wang, C., Li, K. & Luan, S. The CBL-CIPK calcium signaling network: unified paradigm from 20 years of discoveries. Trends Plant Sci. (in the press).

  10. 10.

    Xu, J. et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125, 1347–1360 (2006).

    CAS  PubMed  Google Scholar 

  11. 11.

    Li, L. G., Kim, B. G., Cheong, Y. H., Pandey, G. K. & Luan, S. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 12625–12630 (2006).

    CAS  PubMed  Google Scholar 

  12. 12.

    Ragel, P. et al. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol. 169, 2863–2873 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Li, J. et al. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 26, 3387–3402 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Scherzer, S. et al. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proc. Natl Acad. Sci. USA 112, 7309–7314 (2015).

    CAS  PubMed  Google Scholar 

  15. 15.

    Gaymard, F. et al. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94, 647–655 (1998).

    CAS  PubMed  Google Scholar 

  16. 16.

    Very, A. A. & Sentenac, H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu. Rev. Plant Biol. 54, 575–603 (2003).

    CAS  PubMed  Google Scholar 

  17. 17.

    Bassil, E. et al. The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23, 3482–3497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Barragan, V. et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24, 1127–1142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Cherel, I., Lefoulon, C., Boeglin, M. & Sentenac, H. Molecular mechanisms involved in plant adaptation to low K+ availability. J. Exp. Bot. 65, 833–848 (2014).

    CAS  PubMed  Google Scholar 

  20. 20.

    Amtmann, A. & Armengaud, P. The role of calcium sensor-interacting protein kinases in plant adaptation to potassium-deficiency: new answers to old questions. Cell Res. 17, 483–485 (2007).

    CAS  PubMed  Google Scholar 

  21. 21.

    Moussavi-Nik, M. P. J., Hollamby, G. J. & Graham, R. D. Dynamics of nutrient remobilization during germination and early seedling development in wheat. J. Plant Nutr. 21, 421–434 (1998).

    CAS  Google Scholar 

  22. 22.

    Tang, R. J. et al. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res. 22, 1650–1665 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Krebs, M. et al. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc. Natl Acad. Sci. USA 107, 3251–3256 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    Cheong, Y. H. et al. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J. 52, 223–239 (2007).

    CAS  PubMed  Google Scholar 

  25. 25.

    Armengaud, P., Breitling, R. & Amtmann, A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136, 2556–2576 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Pandey, G. K. et al. CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res. 17, 411–421 (2007).

    CAS  PubMed  Google Scholar 

  27. 27.

    Tang, R. J. et al. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 3134–3139 (2015).

    CAS  PubMed  Google Scholar 

  28. 28.

    Sze, H., Li, X. H. & Palmgren, M. G. Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11, 677–689 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Hedrich, R. Ion channels in plants. Physiol. Rev. 92, 1777–1811 (2012).

    CAS  PubMed  Google Scholar 

  30. 30.

    Hedrich, R., Mueller, T. D., Becker, D. & Marten, I. Structure and function of TPC1 vacuole SV channel gains shape. Mol. Plant 11, 764–775 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Gobert, A., Isayenkov, S., Voelker, C., Czempinski, K. & Maathuis, F. J. The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc. Natl Acad. Sci. USA 104, 10726–10731 (2007).

    CAS  PubMed  Google Scholar 

  32. 32.

    Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    CAS  PubMed  Google Scholar 

  33. 33.

    Zhang, H. W. et al. Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis. Proc. Natl Acad. Sci. USA 114, E2036–E2045 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Voelker, C., Schmidt, D., Mueller-Roeber, B. & Czempinski, K. Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J. 48, 296–306 (2006).

    CAS  PubMed  Google Scholar 

  35. 35.

    Hohner, R. et al. Photosynthesis in Arabidopsis is unaffected by the function of the vacuolar K+ channel TPK3. Plant Physiol. 180, 1322–1335 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Walker, D. J., Leigh, R. A. & Miller, A. J. Potassium homeostasis in vacuolate plant cells. Proc. Natl Acad. Sci. USA 93, 10510–10514 (1996).

    CAS  PubMed  Google Scholar 

  37. 37.

    Martinoia, E. Vacuolar transporters—companions on a longtime journey. Plant Physiol. 176, 1384–1407 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Jaslan, D. et al. Voltage-dependent gating of SV channel TPC1 confers vacuole excitability. Nat. Commun. 10, 2659 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kleist, T. J., Spencley, A. L. & Luan, S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front. Plant Sci. 5, 187 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Gomez-Porras, J. L. et al. Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front. Plant Sci. 3, 167 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yang, Y. et al. Calcineurin B-like proteins CBL4 and CBL10 mediate two independent salt tolerance pathways in Arabidopsis. Int. J. Mol. Sci. 20, 2421 (2019).

    PubMed Central  Google Scholar 

  42. 42.

    Behera, S. et al. Two spatially and temporally distinct Ca2+ signals convey Arabidopsis thaliana responses to K+ deficiency. New Phytol. 213, 739–750 (2017).

    CAS  PubMed  Google Scholar 

  43. 43.

    Hedrich, R. & Neher, E. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329, 833–836 (1987).

    Google Scholar 

  44. 44.

    Ward, J. M. & Schroeder, J. I. Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6, 669–683 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Pan, Y. et al. Dynamic interactions of plant CNGC subunits and calmodulins drive oscillatory Ca2+ channel activities. Dev. Cell 48, 710–725 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Tian, W. et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131–135 (2019).

    CAS  PubMed  Google Scholar 

  47. 47.

    Wang, Y. et al. Golgi-localized cation/proton exchangers regulate ionic homeostasis and skotomorphogenesis in Arabidopsis. Plant Cell Environ. 42, 673–687 (2019).

    CAS  PubMed  Google Scholar 

  48. 48.

    Murashige, T. & S., F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–495 (1962).

    CAS  Google Scholar 

Download references


We thank the Arabidopsis Biological Resource Center for providing Arabidopsis thaliana seed stocks. This work was supported by the National Science Foundation (grant nos. MCB-1714795 and ISO-1339239 to S.L.), the Innovative Genomics Institute of the University of California (to S.L.) and the National Natural Science Foundation of China (grant no. 31770266 to F.-G.Z.). C.W. is sponsored by the Tang Distinguished Scholarship of the University of California at Berkeley.

Author information




R.-J.T. and S.L. conceived and designed the experiments. R.-J.T. performed most of the molecular, genetic and physiological experiments. F.-G.Z. conducted the electrophysiological experiments. Y.Y., C.W. and K.L. assisted in some of the molecular experiments and subcellular localization. T.J.K. and P.G.L. provided some tools and reagents. R.-J.T. and S.L. wrote the manuscript. All the authors discussed the results and commented on the manuscripts.

Corresponding author

Correspondence to Sheng Luan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Ingo Dreyer, Enrico Martinoia and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19 and Table 1.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, RJ., Zhao, FG., Yang, Y. et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments. Nat. Plants 6, 384–393 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing