Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages

Abstract

Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conservation of the symbiotic genes in land plants.
Fig. 2: Maximum-likelihood trees of genes specific to the AMS or intracellular symbioses in land plants.
Fig. 3: Loss of symbiotic genes following mutualism abandonment in Marchantia.
Fig. 4: Conservation of biochemical properties of CCaMK and CYCLOPS in land plants.
Fig. 5: Maximum-likelihood trees of infection-related genes.
Fig. 6: Model for the conservation of symbiotic genes across symbiosis types.

Similar content being viewed by others

Data availability

All assemblies and gene annotations generated in this project can be found in SymDB (www.polebio.lrsv.ups-tlse.fr/symdb/). Raw sequencing data can be found under NCBI Bioproject PRJNA576233 (B. pusilla), PRJNA362997 and PRJNA362995 (M. paleacea genome and transcriptome, respectively) and PRJNA576577 (M. polymorpha ssp. montivagans and ssp. polymorpha).

References

  1. Gensel, P. G. The Emerald Planet: How Plants Changed Earth’s History (Oxford Univ. Press, 2008).

  2. Parniske, M. Arbuscular mycorrhizae: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).

    CAS  PubMed  Google Scholar 

  3. Delaux, P. M., Séjalon-Delmas, N., Bécard, G. & Ané, J. M. Evolution of the plant–microbe symbiotic ‘toolkit’. Trends Plant Sci. 18, 298–304 (2013).

    CAS  PubMed  Google Scholar 

  4. Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith, S. & Read, D. Mycorrhizal Symbiosis (Academic Press, 2008).

  6. Kottke, I. et al. Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol. Res. 107, 957–968 (2003).

    PubMed  Google Scholar 

  7. Griesmann, M. et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361, eaat1743 (2018).

    PubMed  Google Scholar 

  8. Wang, B. & Qiu, Y. L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363 (2006).

    CAS  PubMed  Google Scholar 

  9. Delaux, P. M., Radhakrishnan, G. & Oldroyd, G. Tracing the evolutionary path to nitrogen-fixing crops. Curr. Opin. Plant Biol. 26, 95–99 (2015).

    CAS  PubMed  Google Scholar 

  10. Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eaad4501 (2017).

    PubMed  Google Scholar 

  11. van Velzen, R. et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc. Natl Acad. Sci. USA 115, E4700–E4709 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Albalat, R. & Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).

    CAS  PubMed  Google Scholar 

  13. Tabach, Y. et al. Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature 493, 694–698 (2013).

    CAS  PubMed  Google Scholar 

  14. Delaux, P. M. Comparative phylogenomics of symbiotic associations. New Phytol. 213, 89–94 (2017).

    CAS  PubMed  Google Scholar 

  15. Dey, G., Jaimovich, A., Collins, S. R., Seki, A. & Meyer, T. Systematic discovery of human gene function and principles of modular organization through phylogenetic profiling. Cell Rep. 10, 993–1006 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bravo, A., York, T., Pumplin, N., Mueller, L. A. & Harrison, M. J. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat. Plants 2, 15208 (2016).

    CAS  PubMed  Google Scholar 

  17. Delaux, P. M. et al. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet. 10, e1004487 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Favre, P. et al. A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC Plant Biol. 14, 333 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Xue, L. et al. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol. 167, 854–871 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Keymer, A. et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6, e29107 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Bravo, A., Brands, M., Wewer, V., Dörmann, P. & Harrison, M. J. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol. 214, 1631–1645 (2017).

    CAS  PubMed  Google Scholar 

  22. Grosche, C., Genau, A. C. & Rensing, S. A. Evolution of the symbiosis-specific GRAS regulatory network in bryophytes. Front. Plant Sci. 9, 1621 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Delaux, P.-M. et al. Algal ancestor of land plants was preadapted for symbiosis. Proc. Natl Acad. Sci. USA 112, 13390–13395 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, B. et al. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 186, 514–525 (2010).

    PubMed  Google Scholar 

  25. Humphreys, C. P. et al. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat. Commun. 1, 103 (2010).

    PubMed  Google Scholar 

  26. Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).

    CAS  PubMed  Google Scholar 

  27. Brundrett, M. & Tedersoo, L. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol. 221, 18–24 (2019).

    PubMed  Google Scholar 

  28. Villarreal A, J. C., Crandall-Stotler, B. J., Hart, M. L., Long, D. G. & Forrest, L. L. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytol. 209, 1734–1746 (2016).

    CAS  PubMed  Google Scholar 

  29. Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol. 157, 475–492 (2003).

    PubMed  Google Scholar 

  30. Rey, T. et al. The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility. J. Exp. Bot. 68, 5871–5881 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, H.-J., Floss, D. S., Levesque-Tremblay, V., Bravo, A. & Harrison, M. J. Hyphal branching during arbuscule development requires RAM1. Plant Physiol. 169, 2774–2788 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Luginbuehl, L. H. et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175–1178 (2017).

    CAS  PubMed  Google Scholar 

  33. Jiang, Y. et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175 (2017).

    CAS  PubMed  Google Scholar 

  34. Adams, D. G. The Ecology of cyanobacteria: their diversity in time and space (Kluwer, 2000); https://doi.org/10.1016/0303-2647(92)90025-T

    CAS  PubMed  Google Scholar 

  35. Li, F. W. et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 4, 460–472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cope, K. R. et al. The ectomycorrhizal fungus Laccaria bicolor produces lipochitooligosaccharides and uses the common symbiosis pathway to colonize Populus roots. Plant Cell 31, 2386–2410 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Miura, C. et al. The mycoheterotrophic symbiosis between orchids and mycorrhizal fungi possesses major components shared with mutualistic plant–mycorrhizal symbioses. Mol. Plant Microbe Interact. 31, 1032–1047 (2018).

    CAS  PubMed  Google Scholar 

  38. Oba, H., Tawaray, K. & Wagatsuma, T. Arbuscular mycorrhizal colonization in Lupinus and related genera. Soil Sci. Plant Nutr. 47, 685–694 (2001).

    Google Scholar 

  39. Oldroyd, G. E. D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252–263 (2013).

    CAS  PubMed  Google Scholar 

  40. Gutjahr, C. et al. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20, 2989–3005 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gherbi, H. et al. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc. Natl Acad. Sci. USA 105, 4928–4932 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Svistoonoff, S. et al. The independent acquisition of plant root nitrogen-fixing symbiosis in fabids recruited the same genetic pathway for nodule organogenesis. PLoS ONE 8, e64515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Buendia, L., Wang, T., Girardin, A. & Lefebvre, B. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytol. 210, 184–195 (2016).

    CAS  PubMed  Google Scholar 

  44. Capoen, W. et al. Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. Plant Cell 21, 1526–1540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gleason, C. et al. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441, 1149–1152 (2006).

    CAS  PubMed  Google Scholar 

  46. Singh, S., Katzer, K., Lambert, J., Cerri, M. & Parniske, M. CYCLOPS, A DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15, 139–152 (2014).

    CAS  PubMed  Google Scholar 

  47. Jin, Y. et al. IPD3 and IPD3L function redundantly in rhizobial and mycorrhizal symbioses. Front. Plant Sci. 9, 267 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Yasumura, Y., Crumpton-Taylor, M., Fuentes, S. & Harberd, N. P. Step-by-step acquisition of the gibberellin–DELLA growth-regulatory mechanism during land-plant evolution. Curr. Biol. 17, 1225–1230 (2007).

    CAS  PubMed  Google Scholar 

  49. Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159–165 (2016).

    PubMed  Google Scholar 

  50. Valdés-López, O. et al. A novel positive regulator of the early stages of root nodule symbiosis identified by phosphoproteomics. Plant Cell Physiol. 60, 575–586 (2019).

    PubMed  Google Scholar 

  51. Murray, J. D. et al. Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J. 65, 244–252 (2011).

    CAS  PubMed  Google Scholar 

  52. Imaizumi-Anraku, H. et al. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433, 527–531 (2005).

    CAS  PubMed  Google Scholar 

  53. Liu, C. W. et al. A protein complex required for polar growth of rhizobial infection threads. Nat. Commun. 10, 2848 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Pumplin, N. et al. Medicago truncatula vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J. 61, 482–494 (2010).

    CAS  PubMed  Google Scholar 

  55. Feddermann, N. et al. The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. Plant J. 64, 470–481 (2010).

    CAS  PubMed  Google Scholar 

  56. Takeda, N., Tsuzuki, S., Suzaki, T., Parniske, M. & Kawaguchi, M. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol. 54, 1711–1723 (2013).

    CAS  PubMed  Google Scholar 

  57. Huisman, R. et al. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host–microbe interface in symbiosis. New Phytol. 211, 1338–1351 (2016).

    CAS  PubMed  Google Scholar 

  58. Healey, A., Furtado, A., Cooper, T. & Henry, R. J. A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10, 1–8 (2014).

    Google Scholar 

  59. Luo, R. et al. Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 4, 30 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Leggett, R. M., Clavijo, B. J., Clissold, L., Clark, M. D. & Caccamo, M. Next clip: an analysis and read preparation tool for nextera long mate pair libraries. Bioinformatics 30, 566–568 (2014).

    CAS  PubMed  Google Scholar 

  61. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed  Google Scholar 

  62. Roberts, R. J., Carneiro, M. O. & Schatz, M. C. The advantages of SMRT sequencing. Genome Biol. 14, 405 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS  PubMed  Google Scholar 

  64. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (ANR) grant EVOLSYM (ANR-17-CE20-0006-01) to P.-M.D., by the Bill and Melinda Gates Foundation as Engineering the Nitrogen Symbiosis for Africa (OPP1172165), by the BBSRC as OpenPlant to G.E.D.O (BB/L014130/1), by the 10KP initiative (BGI-Shenzhen), by the National Science Foundation (DEB1831428) to F.-W.L. and by the Swedish Research Council Vetenskapsrådet (VR) to U.L. (2011‐5609 and 2014‐522) and to D.M.E (2016-05180). G.V.R is additionally supported by a Biotechnology and Biological Sciences Research Council Discovery Fellowship (BB/S011005/1). Part of this work was conducted at the Laboratoire de Recherche en Sciences Végétales (LRSV) laboratory, which belongs to the TULIP Laboratoire d’Excellence (ANR-10-LABX-41). We are grateful to the genotoul bioinformatics platform Toulouse Midi–Pyrenees for providing computing and storage resources. We thank F. Roux for helping with the collection of M. polymorpha accessions, A. Cooke for assistance with M. paleacea DNA extraction, P. Szoevenyi for advice on M. polymorpha DNA extraction, and D. Barker and members of the Engineering Nitrogen Symbiosis for Africa (ENSA) project for helpful comments and discussion. Figure 6b was prepared by J. Calli (www.jeremy-calli.fr).

Author information

Authors and Affiliations

Authors

Contributions

P.-M.D., G.V.R., M.K.R., J.K., G.E.D.O. and T.V. conceived the experiments; J.K., H.S.C. and L.C. developed symDB; G.V.R., M.K.R., J.K., T.V., D.L.M.M., N.V., C.L., J.C. and P.-M.D. conducted the experiments; A.-M.L., D.M.E. and U.L. generated the M. polymorpha subspecies genomes; F.-W.L., S.C. and G.K.S.W. generated the B. pusilla transcriptome; P.-M.D., G.V.R., M.K.R., J.K. and T.V. analysed the data; J.K. compiled the supplementary material; G.V.R., M.K.R., G.E.D.O. and P.-M.D. wrote the manuscript.

Corresponding authors

Correspondence to Giles E. D. Oldroyd or Pierre-Marc Delaux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Andrea Genre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Figs. 1–37.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–7, including title and description for each table.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, G.V., Keller, J., Rich, M.K. et al. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat. Plants 6, 280–289 (2020). https://doi.org/10.1038/s41477-020-0613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0613-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing