Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly

Abstract

Photosystem I (PSI) is able to form different oligomeric states across various species. To reveal the structural basis for PSI dimerization and tetramerization, we structurally investigated PSI from the cyanobacterium Anabaena. This revealed a disrupted trimerization domain due to lack of the terminal residues of PsaL in the lumen, which resulted in PSI dimers with loose connections between monomers and weaker energy-coupled chlorophylls than in the trimer. At the dimer surface, specific phospholipids, cofactors and interactions in combination facilitated recruitment of another dimer to form a tetramer. Taken together, the relaxed luminal connections and lipid specificity at the dimer interface account for membrane curvature. PSI tetramer assembly appears to increase the surface area of the thylakoid membrane, which would contribute to PSI crowding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample optimization and structure determination.
Fig. 2: Differences between dimeric and trimeric PSI.
Fig. 3: Chlorophylls at the intradimer interface.
Fig. 4: Interdimer interface and associated lipids.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and the Extended Data figure information. The cryo-EM maps have been deposited in the Electron Microscopy Data Bank with accession code no. EMD-10461. The atomic model has been deposited in the Protein Data Bank under accession code no. 6TCL.

References

  1. Boekema, E. J. et al. Evidence for a trimeric organization of the photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett. 217, 283–286 (1987).

    Article  CAS  Google Scholar 

  2. Amunts, A., Drory, O. & Nelson, N. The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447, 58–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gardian, Z. et al. Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts. Biochim. Biophys. Acta Bioenergy 1767, 725–731 (2007).

    Article  CAS  Google Scholar 

  4. Suga, M. et al. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat. Plants 5, 626–636 (2019).

    Article  PubMed  Google Scholar 

  5. Su, X. et al. Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex. Nat. Plants 5, 273–281 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Qin, X. et al. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat. Plants 5, 263–272 (2019).

    Article  PubMed  Google Scholar 

  7. Amunts, A. & Nelson, N. Plant photosystem I design in the light of evolution. Structure 17, 637–650 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe, M., Kubota, H., Wada, H., Narikawa, R. & Ikeuchi, M. Novel supercomplex organization of photosystem I in Anabaena and Cyanophora paradoxa. Plant Cell Physiol. 52, 162–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Li, M., Semchonok, D. A., Boekema, E. J. & Bruce, B. D. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp. TS-821. Plant Cell 26, 1230–1245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Semchonok, D. A., Li, M., Bruce, B. D., Oostergetel, G. T. & Boekema, E. J. Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. Biochim. Biophys. Acta Bioenergy 1857, 1619–1626 (2016).

    Article  CAS  Google Scholar 

  11. Shelaev, I. V. et al. Comparisons of electron transfer reactions in a cyanobacterial tetrameric and trimeric photosystem I complexes. Photochem. Photobiol. 94, 564–569 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Zehr, J. P. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 19, 162–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Halfmann, C., Gu, L. & Zhou, R. Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem. 16, 3175–3185 (2014).

    Article  CAS  Google Scholar 

  15. Herrero, A., Stavans, J. & Flores, E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 40, 831–854 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Malavath, T., Caspy, I., Netzer-El, S. Y., Klaiman, D. & Nelson, N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta Bioenergy 1859, 645–654 (2018).

    Article  CAS  Google Scholar 

  18. Mazor, Y., Nataf, D., Toporik, H. & Nelson, N. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. eLife 3, e01496 (2014).

    Article  PubMed Central  Google Scholar 

  19. Şener, M. K. et al. Excitation migration in trimeric cyanobacterial photosystem I. J. Chem. Phys. 120, 11183–11195 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Van Eerden, F. J., Melo, M. N., Frederix, P. W. J. M. & Marrink, S. J. Prediction of thylakoid lipid binding sites on photosystem II. Biophys. J. 113, 2669–2681 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thallmair, S., Vainikka, P. A. & Marrink, S. J. Lipid fingerprints and cofactor dynamics of light-harvesting complex II in different membranes. Biophys. J. 116, 1446–1455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu, J. et al. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science 364, 1068–1075 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Corradi, V. et al. Emerging diversity in lipid-protein interactions. Chem. Rev. 119, 5775–5848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakurai, I., Mizusawa, N., Ohashi, S., Kobayashi, M. & Wada, H. Effects of the lack of phosphatidylglycerol on the donor side of photosystem II. Plant Physiol. 144, 1336–1346 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Sheng, X., Liu, X., Cao, P., Li, M. & Liu, Z. Structural roles of lipid molecules in the assembly of plant PSII–LHCII supercomplex. Biophys. Rep. 4, 189–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo, R., Zong, S., Wu, M., Gu, J. & Yang, M. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170, 1247–1257.e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Kovacs, T. et al. Photosystem I oligomerization affects lipid composition in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1384–1395 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Popova, A. V. & Andreeva, A. S. in Advances in Planar Lipid Bilayers and Liposomes Vol. 17 (eds Iglič, A. & Genova, J.) 215–236 (Academic Press, 2013).

  30. Toporik, H., Li, J., Williams, D., Chiu, P.-L. & Mazor, Y. The structure of the stress-induced photosystem I–IsiA antenna supercomplex. Nat. Struct. Mol. Biol. 26, 443–449 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Casella, S. et al. Dissecting the native architecture and dynamics of cyanobacterial photosynthetic machinery. Mol. Plant. 10, 1434–1448 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Nozue, S., Katayama, M., Terazima, M. & Kumazaki, S. Comparative study of thylakoid membranes in terminal heterocysts and vegetative cells from two cyanobacteria, Rivularia M-261 and Anabaena variabilis, by fluorescence and absorption spectral microscopy. Biochim. Biophys. Acta Bioenergy 1858, 742–749 (2017).

    Article  CAS  Google Scholar 

  33. Magnuson, A. & Cardona, T. Thylakoid membrane function in heterocysts. Biochim. Biophys. Acta Bioenergy 1857, 309–319 (2016).

    Article  CAS  Google Scholar 

  34. Pernil, R. & Schleiff, E. Metalloproteins in the biology of heterocysts. Life 9, 32 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  35. Pan, X. et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360, 1109–1113 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zheng, L. et al. Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. Nat. Plants 5, 1087–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Kato, K. et al. Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nat. Commun. 19, 4929 (2019).

    Article  CAS  Google Scholar 

  38. Allen, M. M. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4, 1–4 (1968).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scheres, S. H. W., Núñez-Ramírez, R., Sorzano, C. O. S., Carazo, J. M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977–990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. De la Rosa-Trevín, J. M. et al. Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J. Struct. Biol. 195, 93–99 (2016).

    Article  PubMed  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pettersen, E. F. et al. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi, K., Endo, K. & Wada, H. Specific distribution of phosphatidylglycerol to photosystem complexes in the thylakoid membrane. Front. Plant Sci. 8, 1991 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  CAS  Google Scholar 

  48. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. DeLano, W. L. Pymol: an open-source molecular graphics tool. CCP4 Newslett. Prot. Crystallogr. 40, 11 (2002).

    Google Scholar 

  50. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Yin from Plant Science Facility of the Institute of Botany CAS for excellent technical assistance with 77 K low-temperature fluorescence analysis, and members of Amunts laboratory for active discussions throughout the project. Data were collected at the SciLifeLab cryo-EM facility funded by the foundations Knut and Alice Wallenberg, Family Erling Persson and Kempe. We acknowledge support from SciLifeLab proteogenomics core facility. This work was supported by the National Natural Science Foundation of China (grant nos. 21506113 and 31470229), the Swedish Foundation for Strategic Research (grant no. FFL15:0325), the Ragnar Söderberg Foundation (grant no. M44/16), the Swedish Research Council (grant no. NT_2015–04107), Cancerfonden (grant no. 2017/1041), the European Research Council (grant no. ERC-2018-StG-805230) and the Knut and Alice Wallenberg Foundation (grant no. 2018.0080). A.A. is supported by the EMBO Young Investigator Programme.

Author information

Authors and Affiliations

Authors

Contributions

M.C. and A.A. designed the project and planned the experiments. M.C., A.P.-B. and L.Z. performed protein purification and cryo-EM. A.P.-B. built and refined the model. M.C., A.P.-B. and A.A. analysed the data. A.A. wrote the manuscript with contributions from M.C. and A.P.-B. All authors discussed and commented on the final manuscript.

Corresponding authors

Correspondence to Shizhong Li or Alexey Amunts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Christopher Gisriel, Michael Hippler and Mei Li for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Optimization of the sample preparation.

a, Comparison of PSI extraction with digitonin and β-DDM. Both detergents were set to the final concentration of 1% (w/v) and incubated for 30 min on ice. The relative intensity of the digitonin-solubilized material have been quantified: tetramer: dimer:monomer 4.9:1.5:3.6. At least three independent experiments were repeated with the similar BN-PAGE results. MW marker units are in kDa. b, Stability assay. Concentrations of 0.5%, 1% and 1.5% (w/v) were tested for extraction of PSI. For each concentration, an incubation time of 0.5 h, 1.0 h, 2.0 h was used. The experiment suggests that using 1% digitonin results most PSI tetramer, and no difference was detected for the different time points. Three independents experiments were repeated with the similar results. c, Purification of PSI tetramer. Different amounts of sample were loaded on to three sucrose gradients, labeled 1 to 3. The PSI fractions were analyzed by BN-PAGE, prior to size exclusion chromatography, for which the 280 nm absorption is shown. The eluted peak was assessed for purity on BN-PAGE and subjected to cryo-EM. At least six independent experiments were repeated with the similar results.

Extended Data Fig. 2

Cryo-EM image processing of PSI particles.

Extended Data Fig. 3 Resolution of cryo-EM reconstruction.

a, Map colored by local resolution, viewed from the surface and cut-through. b, FSC curve, showing overall resolution of the cryo-EM map. (c) Map to model FSC.

Extended Data Fig. 4 Conservation of subunit PsaL.

a, Sideview of the superimposed subunit PsaL from Anabaena, Synechocystis and T. Elongatus. C-terminus boxed. b, Corresponding sequence alignment. Both illustrate missing C-terminal residues in the lumen in PsaL from Anabaena. C-terminus boxed.

Extended Data Fig. 5 77 K fluorescence absorption spectra.

a, Sucrose gradient showing the monomer, dimer and tetramer of PSI. At least three independent experiments were repeated with similar sucrose gradients results. b, The emission spectra between 600 and 800 nm after excitation at 435 nm. As revealed in Fig. 2, dimer. Five independent experiments were repeated with similar results. c, Zoom into the peaks, showing a slight shift of 2.8 nm from PSI monomer to PSI dimer.

Extended Data Fig. 6 Localization of lipids.

Elements in the interphases found in the tetramer, but not in the trimer structures (PDBID: 1JB0 and 5OY0) are shown as circles12,17. Lipids are represented as orange circles and digitonin molecules in locations, where no lipids are found in the trimer are shown as purple circles and carotenoid as red ovals.

Extended Data Fig. 7 Nearest protein coordinates between two dimers.

a, Overview of the inter-dimer region. b, The nearest residues are within of 4.1–4.8 Å range, and no protein-protein interaction observed.

Extended Data Fig. 8 Digitonin molecules at the dimer-dimer interface.

a, Three digitonin molecules modeled into elongated densities (mesh). Residues coordinating the binding in the membrane plane are shown as described in the text, showing interactions and experimental density (contour levels used are 0.491 and 0.477 respectively). b, Environment of the digitonin molecules from a, in schematic representation, specific elements contributing to the binding are shown. c, Density for lipids found in the dimer-dimer interphase (contour levels used are 0.528, 0.422, 0.550, 0.488 and 0.422 respectively).

Extended Data Fig. 9 Carotenoid molecule at the dimer-dimer interface.

A carotenoid molecule BCR-855 is found in the PsaB region with its benzene rings in proximity to chlorophylls a816 and a821.

Extended Data Fig. 10 Model of PSI tetramer arrangement.

PSI trimer crowding model on the left is derived from the model obtained by atomic force and confocal fluorescence microscopy (MacGregor-Chatwin et al. 2017)51. PSI tetramer crowding model is adopted on the same principle, and the additional membrane surface would appear due to the curvature between the dimers as described in the text.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Perez-Boerema, A., Zhang, L. et al. Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly. Nat. Plants 6, 314–320 (2020). https://doi.org/10.1038/s41477-020-0610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0610-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing