Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Revisiting carbon isotope discrimination in C3 plants shows respiration rules when photosynthesis is low


Stable isotopes are commonly used to study the diffusion of CO2 within photosynthetic plant tissues. The standard method used to interpret the observed preference for the lighter carbon isotope in C3 photosynthesis involves the model of Farquhar et al., which relates carbon isotope discrimination to physical and biochemical processes within the leaf. However, under many conditions the model returns unreasonable results for mesophyll conductance to CO2 diffusion (gm), especially when rates of photosynthesis are low. Here, we re-derive the carbon isotope discrimination model using modified assumptions related to the isotope effect of mitochondrial respiration. In particular, we treat the carbon pool associated with respiration as separate from the pool of primary assimilates. We experimentally test the model by comparing gm values measured with different CO2 source gases varying in their isotopic composition, and show that our new model returns matching gm values that are much more reasonable than those obtained with the previous model. We use our results to discuss CO2 diffusion properties within the mesophyll.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic representation of the model assumptions and its derivation.
Fig. 2: Mesophyll conductance (gm) values estimated with different isotope discrimination models.
Fig. 3: Separation of \({{\varDelta }}_{{\mathrm{obs}}}^{13}\) into its individual components.
Fig. 4: Key model parameters measured from Ci and PAR responses.
Fig. 5: Mesophyll conductance (gm) values estimated with different discrimination models.
Fig. 6: Impact of the value of f on the estimated value of gm.
Fig. 7: Comparison of apparent gm derived assuming a single-resistance versus a two-resistance discrimination model.

Data availability

All generated and analysed data that support the findings of this study are included in the published article and its Supplementary Information.


  1. 1.

    Long, S. P., Farage, P. K. & Garcia, R. L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 47, 1629–1642 (1996).

    CAS  Google Scholar 

  2. 2.

    Busch, F. A., Sage, T. L., Cousins, A. B. & Sage, R. F. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ. 36, 200–212 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Gong, X. Y., Tcherkez, G., Wenig, J., Schäufele, R. & Schnyder, H. Determination of leaf respiration in the light: comparison between an isotopic disequilibrium method and the Laisk method. New Phytol. 218, 1371–1382 (2018).

    CAS  PubMed  Google Scholar 

  4. 4.

    Farquhar, G. D. & Richards, R. A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 11, 539–552 (1984).

    CAS  Google Scholar 

  5. 5.

    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    CAS  Google Scholar 

  6. 6.

    Broecker, W. S., Takahashi, T., Simpson, H. J. & Peng, T.-H. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418 (1979).

    CAS  PubMed  Google Scholar 

  7. 7.

    Yakir, D. & Sternberg, Ld. S. L. The use of stable isotopes to study ecosystem gas exchange. Oecologia 123, 297–311 (2000).

    CAS  PubMed  Google Scholar 

  8. 8.

    Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121–137 (1982).

    CAS  Google Scholar 

  9. 9.

    Evans, J. R., Sharkey, T. D., Berry, J. A. & Farquhar, G. D. Carbon isotope discrimination measured concurrently with gas-exchange to investigate CO2 diffusion in leaves of higher plants. Aust. J. Plant Physiol. 13, 281–292 (1986).

    CAS  Google Scholar 

  10. 10.

    Ubierna, N. et al. Critical review: incorporating the arrangement of mitochondria and chloroplasts into models of photosynthesis and carbon isotope discrimination. Photosynth. Res. 141, 5–31 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Tcherkez, G. et al. On the 13C/12C isotopic signal of day and night respiration at the mesocosm level. Plant Cell Environ. 33, 900–913 (2010).

    CAS  PubMed  Google Scholar 

  12. 12.

    Cernusak, L. A., Marshall, J. D., Comstock, J. P. & Balster, N. J. Carbon isotope discrimination in photosynthetic bark. Oecologia 128, 24–35 (2001).

    PubMed  Google Scholar 

  13. 13.

    Gu, L. & Sun, Y. Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant Cell Environ. 37, 1231–1249 (2014).

    CAS  PubMed  Google Scholar 

  14. 14.

    Barbour, M. M., Ryazanova, S. & Tcherkez, G. in Plant Respiration: Metabolic Fluxes and Carbon Balance (eds Tcherkez, G. & Ghashghaie, J.) 143–160 (Springer International Publishing, 2017).

  15. 15.

    Flexas, J. et al. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 30, 1284–1298 (2007).

    CAS  PubMed  Google Scholar 

  16. 16.

    Vrábl, D., Vašková, M., Hronková, M., Flexas, J. & Šantrůček, J. Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid. J. Exp. Bot. 60, 2315–2323 (2009).

    PubMed  Google Scholar 

  17. 17.

    Hassiotou, F., Ludwig, M., Renton, M., Veneklaas, E. J. & Evans, J. R. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J. Exp. Bot. 60, 2303–2314 (2009).

    CAS  PubMed  Google Scholar 

  18. 18.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS  PubMed  Google Scholar 

  19. 19.

    Warren, C. Estimating the internal conductance to CO2 movement. Funct. Plant Biol. 33, 431–442 (2006).

    CAS  Google Scholar 

  20. 20.

    Harley, P. C., Loreto, F., Dimarco, G. & Sharkey, T. D. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol. 98, 1429–1436 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Di Marco, G., Manes, F., Tricoli, D. & Vitale, E. Fluorescence parameters measured concurrently with net photosynthesis to investigate chloroplastic CO2 concentration in leaves of Quercus ilex L. J. Plant Physiol. 136, 538–543 (1990).

    Google Scholar 

  22. 22.

    van der Putten, P. E. L., Yin, X. & Struik, P. C. Calibration matters: on the procedure of using the chlorophyll fluorescence method to estimate mesophyll conductance. J. Plant Physiol. 220, 167–172 (2018).

    PubMed  Google Scholar 

  23. 23.

    Farquhar, G. D. & Cernusak, L. A. Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ. 35, 1221–1231 (2012).

    CAS  PubMed  Google Scholar 

  24. 24.

    McNevin, D. B. et al. Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. J. Biol. Chem. 282, 36068–36076 (2007).

    CAS  PubMed  Google Scholar 

  25. 25.

    Roeske, C. & O’Leary, M. H. Carbon isotope effects on enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23, 6275–6284 (1984).

    CAS  Google Scholar 

  26. 26.

    Guy, R. D., Fogel, M. L. & Berry, J. A. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol. 101, 37–47 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Evans, J. R. & von Caemmerer, S. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ. 36, 745–756 (2013).

    CAS  PubMed  Google Scholar 

  28. 28.

    Gillon, J. S. & Yakir, D. Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol. 123, 201–214 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Igamberdiev, A. U. et al. Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth. Res. 81, 139–152 (2004).

    CAS  Google Scholar 

  30. 30.

    Lanigan, G. J., Betson, N., Griffiths, H. & Seibt, U. Carbon isotope fractionation during photorespiration and carboxylation in Senecio. Plant Physiol. 148, 2013–2020 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rooney, M. A. Short-term Carbon Isotopic Fractionation in Plants (Univ. of Wisconsin-Madison, 1988).

  32. 32.

    Ubierna, N., Holloway-Phillips, M.-M. & Farquhar, G. D. in Photosynthesis: Methods and Protocols (Ed. Covshoff, D.) 155–196 (Springer, 2018).

  33. 33.

    Bathellier, C., Badeck, F.-W. & Ghashghaie, J. in Plant Respiration: Metabolic Fluxes and Carbon Balance (eds Tcherkez, G. & Ghashghaie, J.) 43–68 (Springer International Publishing, 2017).

  34. 34.

    Ubierna, N. & Farquhar, G. D. Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant Cell Environ. 37, 1494–1498 (2014).

    CAS  PubMed  Google Scholar 

  35. 35.

    O’Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567 (1981).

    Google Scholar 

  36. 36.

    Tcherkez, G., Farquhar, G., Badeck, F. & Ghashghaie, J. Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct. Plant Biol. 31, 857–877 (2004).

    CAS  Google Scholar 

  37. 37.

    Tcherkez, G., Mahé, A. & Hodges, M. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci. 16, 499–506 (2011).

    CAS  PubMed  Google Scholar 

  38. 38.

    von Caemmerer, S. & Farquhar, G. D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387 (1981).

    Google Scholar 

  39. 39.

    Tholen, D., Ethier, G., Genty, B., Pepin, S. & Zhu, X.-G. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ. 35, 2087–2103 (2012).

    CAS  PubMed  Google Scholar 

  40. 40.

    Yin, X. & Struik, P. C. Simple generalisation of a mesophyll resistance model for various intracellular arrangements of chloroplasts and mitochondria in C3 leaves. Photosynth. Res. 132, 211–220 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Tholen, D., Éthier, G. & Genty, B. Mesophyll conductance with a twist. Plant Cell Environ. 37, 2456–2458 (2014).

    CAS  PubMed  Google Scholar 

  42. 42.

    Tcherkez, G. et al. Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance. New Phytol. 216, 986–1001 (2017).

    CAS  PubMed  Google Scholar 

  43. 43.

    Tcherkez, G. et al. Short-term effects of CO2 and O2 on citrate metabolism in illuminated leaves. Plant Cell Environ. 35, 2208–2220 (2012).

    CAS  PubMed  Google Scholar 

  44. 44.

    Tcherkez, G., Mauve, C., Lamothe, M., Le Bras, C. & Grapin, A. The 13C/12C isotopic signal of day‐respired CO2 in variegated leaves of Pelargonium × hortorum. Plant Cell Environ. 34, 270–283 (2011).

    CAS  PubMed  Google Scholar 

  45. 45.

    Schnyder, H., Schäufele, R., Lötscher, M. & Gebbing, T. Disentangling CO2 fluxes: direct measurements of mesocosm-scale natural abundance 13CO2/12CO2 gas exchange, 13C discrimination, and labelling of CO2 exchange flux components in controlled environments. Plant Cell Environ. 26, 1863–1874 (2003).

    CAS  Google Scholar 

  46. 46.

    Wingate, L., Seibt, U., Moncrieff, J. B., Jarvis, P. G. & Lloyd, J. Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant Cell Environ. 30, 600–616 (2007).

    CAS  PubMed  Google Scholar 

  47. 47.

    Gauthier, P. P. G. et al. In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus. New Phytol. 185, 988–999 (2010).

    CAS  PubMed  Google Scholar 

  48. 48.

    Tazoe, Y., von Caemmerer, S., Badger, M. R. & Evans, J. R. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. J. Exp. Bot. 60, 2291–2301 (2009).

    CAS  PubMed  Google Scholar 

  49. 49.

    Ellsworth, P. V., Ellsworth, P. Z., Koteyeva, N. K. & Cousins, A. B. Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. New Phytol. 219, 66–76 (2018).

    CAS  PubMed  Google Scholar 

  50. 50.

    Jahan, E., Amthor, J. S., Farquhar, G. D., Trethowan, R. & Barbour, M. M. Variation in mesophyll conductance among Australian wheat genotypes. Funct. Plant Biol. 41, 568–580 (2014).

    Google Scholar 

  51. 51.

    Ubierna, N., Sun, W., Kramer, D. M. & Cousins, A. B. The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis. Plant Cell Environ. 36, 365–381 (2013).

    CAS  PubMed  Google Scholar 

  52. 52.

    Douthe, C., Dreyer, E., Epron, D. & Warren, C. R. Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings. J. Exp. Bot. 62, 5335–5346 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Tcherkez, G. How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Funct. Plant Biol. 33, 911–920 (2006).

    CAS  Google Scholar 

  54. 54.

    Igamberdiev, A. U. et al. Decarboxylation of glycine contributes to carbon isotope fractionation in photosynthetic organisms. Photosynth. Res. 67, 177–184 (2001).

    CAS  PubMed  Google Scholar 

  55. 55.

    Ivlev, A. A., Bykova, N. V. & Igamberdiev, A. U. Fractionation of carbon (13C/12C) isotopes in glycine decarboxylase reaction. FEBS Lett. 386, 174–176 (1996).

    CAS  PubMed  Google Scholar 

  56. 56.

    Holloway-Phillips, M., Cernusak, L. A., Stuart-Williams, H., Ubierna, N. & Farquhar, G. D. Two-source δ18O method to validate the CO18O-photosynthetic discrimination model: implications for mesophyll conductance. Plant Physiol. 181, 1175–1190 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Farquhar, G. D. & Busch, F. A. Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol. 214, 570–584 (2017).

    CAS  PubMed  Google Scholar 

Download references


We thank N. Ubierna and G. Tcherkez for critical feedback on the manuscript. This work was supported by the Australian Government through the Australian Research Council Centre of Excellence for Translational Photosynthesis.

Author information




F.A.B. conceived the study. F.A.B. and G.D.F. carried out the modelling. F.A.B. and M.H.-P. undertook the experimental work on a system set up by H.S.-W. and M.H.-P. Data were analysed by M.H.-P. and F.A.B. F.A.B. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Florian A. Busch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Jaume Flexas, Thomas Sharkey and Danny Tholen for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Sections 1–6 and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Busch, F.A., Holloway-Phillips, M., Stuart-Williams, H. et al. Revisiting carbon isotope discrimination in C3 plants shows respiration rules when photosynthesis is low. Nat. Plants 6, 245–258 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing