Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of self-compatibility by a mutant Sm-RNase in citrus

Abstract

Self-incompatibility (SI) is an important mechanism that prevents self-fertilization and inbreeding in flowering plants. The most widespread SI system utilizes S ribonucleases (S-RNases) and S-locus F-boxes (SLFs) as S determinants. In citrus, SI is ancestral, and Citrus maxima (pummelo) is self-incompatible, while Citrus reticulata (mandarin) and its hybrids are self-compatible (SC). Here, we identify nine highly polymorphic pistil-specific, developmentally expressed S-RNases from pummelo that segregate with S haplotypes in a gametophytic manner and cluster with authentic S-RNases. We provide evidence that these S-RNases function as the female S determinants in citrus. Moreover, we show that each S-RNase is linked to approximately nine SLFs. In an analysis of 117 citrus SLF and SFL-like (SLFL) genes, we reveal that they cluster into 12 types and that the S-RNases and intra-haplotypic SLF and SLFL genes co-evolved. Our data support the notion that citrus have a S locus comprising a S-RNase and several SLFs that fit the non-self-recognition model. We identify a predominant single nucleotide mutation, Sm-RNase, in SC citrus, which provides a ‘natural’ loss of function. We show that SI–SC transitions due to the Sm-RNase initially arose in mandarin, spreading to its hybrids and became fixed. Identification of an evolutionarily distant new genus utilizing the S-RNase-based SI system, >100 million years separated from the nearest S-RNase family, is a milestone for evolutionary comparative studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The citrus S-RNases exhibit key features of S-RNases.
Fig. 2: The pummelo S-RNases exhibit RNase activity and elicit S-specific pollen inhibition in an in vitro bioassay.
Fig. 3: Multiple candidate SLF and SLFL genes are located at the citrus S locus.
Fig. 4: A truncated Sm-RNase appears to be responsible for the loss of SI in citrus.
Fig. 5: Postulated spread of the Sm-RNase and SC in Citrus.
Fig. 6: Phylogenetic relationship of different SI systems in flowering plants.

Similar content being viewed by others

Data availability

The RNA-seq data shown in Supplementary Table 3 (for pummelo and grapefruit) are available at NCBI BioProject ID under accession codes PRJNA526584 and PRJNA573625. The sequence data shown in Supplementary Table 7 of the pummelo S1-locus and S2-locus BAC clones are available at NCBI BioProject ID under accession codes PRJNA573817 and PRJNA573818, respectively. The DNA sequencing data shown in Supplementary Table 11 from the different citrus species are available at NCBI BioProject ID under accession codes PRJNA544805 (C. maxima), PRJNA544816 (C. aurantium), PRJNA544866 (C. paradisi), PRJNA544867 (C. limon) and PRJNA573624 (C. reticulata). The sequence data of the 15 citrus S-RNase genes are available at NCBI GenBank ID under accession codes MN652897, MN652898, MN652899, MN652900, MN652901, MN652902, MN652903, MN652904, MN652905, MN652906, MN652907, MN652908, MN652909, MN652910, MN652911 and MN652912. Any other raw data are available from the corresponding author upon request.

References

  1. de Nettancourt, D. Incompatibility and Incongruity in Wild and Cultivated Plants Vol. 3 (Springer, 2001).

  2. Xue, Y., Carpenter, R., Dickinson, H. G. & Coen, E. S. Origin of allelic diversity in antirrhinum S locus RNases. Plant Cell 8, 805–814 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sassa, H. et al. Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol. Gen. Genet. 250, 547–557 (1996).

    CAS  PubMed  Google Scholar 

  4. McClure, B. A. et al. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342, 955–957 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Takayama, S. & Isogai, A. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56, 467–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Kubo, K. et al. Collaborative non-self recognition system in S-RNase–based self-incompatibility. Science 330, 796–799 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Fujii, S., Kubo, K.-I. & Takayama, S. Non-self- and self-recognition models in plant self-incompatibility. Nat. Plants 2, 16130 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Ramanauskas, K. & Igić, B. The evolutionary history of plant T2/S-type ribonucleases. PeerJ 5, e3790 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Igić, B. & Kohn, J. R. Evolutionary relationships among self-incompatibility RNases. Proc. Natl Acad. Sci. USA 98, 13167–13171 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Krajewski, A. J. & Rabe, E. Citrus flowering: a critical evaluation. J. Hortic. Sci. 70, 357–374 (1995).

    Article  Google Scholar 

  11. Ngo, B. X., Wakana, A., Kim, J. H., Mori, T. & Sakai, K. Estimation of self-incompatibility S genotypes of Citrus cultivars and plants based on controlled pollination with restricted number of pollen grains. J. Fac. Agr., Kyushu Univ. 55, 67–72 (2010).

    Google Scholar 

  12. Ngo, B. X., Wakana, A., Park, S. M., Nada, Y. & Fukudome, I. Pollen tube behaviors in self-incompatible and self-compatible Citrus cultivars. J. Fac. Agr. Kyushu Univ. 45, 443–457 (2001).

    Google Scholar 

  13. Yamamoto, M., Kubo, T. & Tominaga, S. Self- and cross-incompatibility of various citrus accessions. J. Jpn. Soc. Hort. Sci. 75, 372–378 (2006).

    Article  Google Scholar 

  14. Miller, A. J. & Gross, B. L. From forest to field: perennial fruit crop domestication. Am. J. Bot. 98, 1389–1414 (2011).

    Article  PubMed  Google Scholar 

  15. Zhang, S. et al. Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility. Plant Reprod. 31, 43–57 (2018).

    Article  PubMed  Google Scholar 

  16. Hand, M. L. & Koltunow, A. M. G. The genetic gontrol of apomixis: asexual seed formation. Genetics 197, 441–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soost, R. K. The incompatibility gene system in citrus. In Proc. First Int. Citrus Symp. (ed. Chapman, H.) 189–190 (Univ. California, Riverside, 1968).

  18. Kim, J. H. et al. Determination of self-incompatible Citrus cultivars with S 1 and/or S 2 alleles by pollination with homozygous S1 seedlings (S 1S 1 or S 2S 2) of ‘Banpeiyu’ pummelo. J. Jpn. Soc. Hort. Sci. 80, 404–413 (2011).

    Article  Google Scholar 

  19. Miao, H., Ye, Z., Silva, J. A., Qin, Y. H. & Hu, G. Identifying differentially expressed genes in pollen from self-incompatible “Wuzishatangju” and self-compatible “Shatangju” mandarins. Int. J. Mol. Sci. 14, 8538–8555 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liang, M. et al. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Mol. Genet. Genomics 292, 325–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, S. et al. Characterization of the ‘Xiangshui’ lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Mol. Genet. Genomics 290, 365–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Castric, V. & Vekemans, X. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol. Ecol. 13, 2873–2889 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Wright, S. The distribution of self-sterility alleles in populations. Genetics 24, 538–552 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodwillie, C., Kalisz, S. & Eckert, C. G. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47–79 (2005).

    Article  Google Scholar 

  25. Stone, J. L. Molecular mechanisms underlying the breakdown of gametophytic self-incompatibility. Q. Rev. Biol. 77, 17–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. McClure, B., Cruz-García, F. & Romero, C. Compatibility and incompatibility in S-RNase-based systems. Ann. Bot. 108, 647–658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franklin-Tong, V. E., Lawrence, M. J. & Franklin, F. C. H. An in vitro bioassay for the stigmatic product of the self-incompatibility gene in Papaver rhoeas L. New Phytol. 110, 109–118 (1988).

    Article  Google Scholar 

  28. Franklin-Tong, V. E. in Self-Incompatibility in Flowering Plants: Evolution, Diversity, and Mechanisms (ed. Franklin-Tong, V. E.) 237–258 (Springer, 2008).

  29. Kubo, K. et al. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. Nat. Plants 1, 14005 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Royo, J. et al. Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum. Proc. Natl Acad. Sci. USA 91, 6511–6514 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sassa, H., Hirano, H., Nishio, T. & Koba, T. Style-specific self-compatible mutation caused by deletion of the S-RNase gene in Japanese pear (Pyrus serotina). Plant J. 12, 223–227 (1997).

    Article  CAS  Google Scholar 

  32. Wang, X. et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 49, 765–772 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, X. M. et al. Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae). Tree Genet. Genomes https://doi.org/10.1007/s11295-017-1113-4 (2017).

  34. Wu, G. A. et al. Genomics of the origin and evolution of Citrus. Nature 554, 311–316 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Nowak, M. D., Davis, A. P., Anthony, F. & Yoder, A. D. Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae). PLoS ONE 6, e21019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Asquini, E. et al. S-RNase-like sequences in styles of Coffea (Rubiaceae). Evidence for S-RNase based gametophytic self-incompatibility? Trop. Plant Biol. 4, 237–249 (2011).

    Article  CAS  Google Scholar 

  37. Igić, B., Lande, R. & Kohn, J. R. Loss of self-incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169, 93–104 (2008).

    Article  Google Scholar 

  38. Li, M. et al. Genome structure and evolution of Antirrhinum majus L. Nat. Plants 5, 174–183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okada, K. et al. Deletion of a 236 kb region around S 4-RNase in a stylar-part mutant S 4sm-haplotype of Japanese pear. Plant Mol. Biol. 66, 389–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Golz, J. F., Clarke, A. E., Newbigin, E. & Anderson, M. A relic S-RNase is expressed in the styles of self-compatible Nicotiana sylvestris. Plant J. 16, 591–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Y., Liu, Q., Tao, N. & Deng, X. Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). J. Huazhong Agr. Univ. 25, 300–304 (2006).

    CAS  Google Scholar 

  42. Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211 (2009).

    PubMed  Google Scholar 

  46. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kheyr-Pour, A. et al. Sexual plant reproduction sequence diversity of pistil S-proteins associated with gametophytic self-incompatibility in Nicotiana alata. Sex. Plant Reprod. 3, 88–97 (1990).

    Article  Google Scholar 

  48. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, C., Xia, R., Chen, H. & He, Y. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. Preprint at https://www.biorxiv.org/content/10.1101/289660v2 (2018).

  50. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Workenhe, S. T., Kibenge, M. J. T., Iwamoto, T. & Kibenge, F. S. B. Absolute quantitation of infectious salmon anaemia virus using different real-time reverse transcription PCR chemistries. J. Virol. Methods 154, 128–134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yen, Y. & Green, P. J. Identification and properties of the major ribonucleases of Arabidopsis thaliana. Plant Physiol. 97, 1487–1493 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Besbes, F., Franz-Oberdorf, K. & Schwab, W. Phosphorylation-dependent ribonuclease activity of Fra a 1 proteins. J. Plant Physiol. 233, 1–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. The Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classifcation for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121 (2009).

Download references

Acknowledgements

We are grateful to J. Wu from Nanjing Agricultural University for providing the sample of Pyrus bretschneideri. This research was financially supported by the National Key Research and Development Programme of China (grant no. 2018YFD1000107), the National Natural Science Foundation of China (grant nos. 31772259, 31630065 and 31521092), the Fundamental Research Funds for the Central Universities (grant no. 2662019PY044) and the China Agriculture Research System (grant no. CARS-27). The Biotechnology and Biological Sciences Research Council (BBSRC) funds research in the laboratories of M.B. and V.E.F.-T. (grant no. BB/P005489/1). We would like to thank T. Li (China Agricultural University) and C. Franklin (School of Biosciences, University of Birmingham, UK) for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

L.C., M.L. and V.E.F.-T. designed the experiments. M.L., Z.C., H.Y., Q.X.Jr and M.T. performed the experiments. J.L. completed the collection and sequencing of sour orange. M.L., A.Z., Y. Liu, Y. Li and R.X. analysed the bioinformatics data. S.W., C.C., Z.X. and C.D. collected the pummelo accessions. J.Y., W.G., Q.X., R.M.L., X.D., M.B. and L.C. were involved in the research design and improvement of the manuscript. M.L. and V.E.F.-T. wrote the manuscript.

Corresponding author

Correspondence to Lijun Chai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All materials generated during this study are available from the corresponding author upon request.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Tables 1–11.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Cao, Z., Zhu, A. et al. Evolution of self-compatibility by a mutant Sm-RNase in citrus. Nat. Plants 6, 131–142 (2020). https://doi.org/10.1038/s41477-020-0597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0597-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing