Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synchronization of developmental, molecular and metabolic aspects of source–sink interactions

Abstract

Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source–sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Phloem loading and unloading in potato.
Fig. 2: Unloading and post-phloem transport in cassava tuberous roots.

References

  1. 1.

    South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363, eaat9077 (2019).

    CAS  PubMed  Google Scholar 

  2. 2.

    Sonnewald, U. & Fernie, A. R. Next-generation strategies for understanding and influencing source-sink relations in crop plants. Curr. Opin. Plant Biol. 43, 63–70 (2018).

    PubMed  Google Scholar 

  3. 3.

    Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    Sweetlove, L. J., Nielsen, J. & Fernie, A. R. Engineering central metabolism - a grand challenge for plant biologists. Plant J. 90, 749–763 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Korner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).

    CAS  PubMed  Google Scholar 

  6. 6.

    Burnett, A. C., Rogers, A., Rees, M. & Osborne, C. P. Carbon source-sink limitations differ between two species with contrasting growth strategies. Plant Cell Environ. 39, 2460–2472 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Jonik, C., Sonnewald, U., Hajirezaei, M. R., Flugge, U. I. & Ludewig, F. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol. J. 10, 1088–1098 (2012).

    CAS  PubMed  Google Scholar 

  8. 8.

    Rossi, M., Bermudez, L. & Carrari, F. Crop yield: challenges from a metabolic perspective. Curr. Opin. Plant Biol. 25, 79–89 (2015).

    CAS  PubMed  Google Scholar 

  9. 9.

    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. N. Phytol. 165, 351–371 (2005).

    Google Scholar 

  10. 10.

    Xiao, Y. G. et al. Genetic gains in grain yield and physiological traits of winter wheat in Shandong Province, China, from 1969 to 2006. Crop Sci. 52, 44–56 (2012).

    Google Scholar 

  11. 11.

    Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Ann. Rev. Plant Biol. 63, 19–47 (2012).

    CAS  Google Scholar 

  12. 12.

    Sage, R. F. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. J. Exp. Bot. 68, 4039–4056 (2017).

    PubMed  Google Scholar 

  13. 13.

    Sage, R. F., Christin, P. A. & Edwards, E. J. The C(4) plant lineages of planet Earth. J. Exp. Bot. 62, 3155–3169 (2011).

    CAS  PubMed  Google Scholar 

  14. 14.

    Arrivault, S. et al. Metabolite profiles reveal inter-specific variation in operation of the Calvin-Benson cycle in both C4 and C3 plants. J. Exp. Bot. (in the press).

  15. 15.

    Zhu, X. G., de Sturler, E. & Long, S. P. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol. 145, 513–526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Galmes, J. et al. Rubisco catalytic properties optimized for present and future climatic conditions. Plant Sci. 226, 61–70 (2014).

    CAS  PubMed  Google Scholar 

  17. 17.

    Sharwood, R. E., Ghannoum, O. & Whitney, S. M. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. Curr. Opin. Plant Biol. 31, 135–142 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Borghi, G. L. et al. Relationship between irradiance and levels of Calvin-Benson cycle and other intermediates in the model eudicot Arabidopsis and the model monocot rice. J. Exp. Bot. 70, 5809–5825 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Long, S. P., Marshall-Colon, A. & Zhu, X. G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66 (2015).

    CAS  PubMed  Google Scholar 

  20. 20.

    Li, Y., Heckmann, D., Lercher, M. J. & Maurino, V. G. Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants. J. Exp. Bot. 68, 117–125 (2017).

    CAS  PubMed  Google Scholar 

  21. 21.

    Andralojc, P. J., Carmo-Silva, E., Degen, G. E. & Parry, M. A. J. Increasing metabolic potential: C-fixation. Essays Biochem. 62, 109–118 (2018).

    PubMed  Google Scholar 

  22. 22.

    Foyer, C. H., Ruban, A. V. & Nixon, P. J. Photosynthesis solutions to enhance productivity. Philos. Trans. R. Soc. B 372, 20160374 (2017).

    Google Scholar 

  23. 23.

    Nuccio, M. L. et al. Strategies and tools to improve crop productivity by targeting photosynthesis. Philos. Trans. R. Soc. B 372, 20160377 (2017).

    Google Scholar 

  24. 24.

    Jansson, C., Vogel, J., Hazen, S., Brutnell, T. & Mockler, T. Climate-smart crops with enhanced photosynthesis. J. Exp. Bot. 69, 3801–3809 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Sharwood, R. E., Ghannoum, O., Kapralov, M. V., Gunn, L. H. & Whitney, S. M. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nat. Plants 2, 16186 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Sharwood, R. E. & Whitney, S. M. Correlating Rubisco catalytic and sequence diversity within C3 plants with changes in atmospheric CO2 concentrations. Plant Cell Environ. 37, 1981–1984 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Driever, S. M. et al. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos. Trans. R. Soc. B 372, 20160384 (2017).

    Google Scholar 

  28. 28.

    Lefebvre, S. et al. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol. 138, 451–460 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Simkin, A. J. et al. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol. J. 15, 805–816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Simkin, A. J., McAusland, L., Lawson, T. & Raines, C. A. Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol. 175, 134–145 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rae, B. D. et al. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. J. Exp. Bot. 68, 3717–3737 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Schuler, M. L., Mantegazza, O. & Weber, A. P. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. Plant J. 87, 51–65 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Nolke, G., Houdelet, M., Kreuzaler, F., Peterhansel, C. & Schillberg, S. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnol. J. 12, 734–742 (2014).

    PubMed  Google Scholar 

  34. 34.

    Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016).

    CAS  PubMed  Google Scholar 

  35. 35.

    Lawson, T. & Blatt, M. R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164, 1556–1570 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lawson, T., Kramer, D. M. & Raines, C. A. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr. Opin. Biotech. 23, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  37. 37.

    Glowacka, K. et al. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 9, 868 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Papanatsiou, M. et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363, 1456–1459 (2019).

    CAS  PubMed  Google Scholar 

  39. 39.

    Caine, R. S. et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. N. Phytol. 221, 371–384 (2018).

    Google Scholar 

  40. 40.

    Hughes, J. et al. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiol. 174, 776–787 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    van Bezouw, R., Keurentjes, J. J. B., Harbinson, J. & Aarts, M. G. M. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant J. 97, 112–133 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Nuccio, M. L. et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat. Biotech. 33, 862–869 (2015).

    CAS  Google Scholar 

  43. 43.

    Oszvald, M. et al. Trehalose 6-phosphate regulates photosynthesis and assimilate partitioning in reproductive tissue. Plant Physiol. 176, 2623–2638 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Gould, N. et al. AtSUC2 has a role for sucrose retrieval along the phloem pathway: evidence from carbon-11 tracer studies. Plant Sci. 188–189, 97–101 (2012).

    PubMed  Google Scholar 

  45. 45.

    Zhang, C. & Turgeon, R. Mechanisms of phloem loading. Curr. Opin. Plant Biol. 43, 71–75 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    De Schepper, V., De Swaef, T., Bauweraerts, I. & Steppe, K. Phloem transport: a review of mechanisms and controls. J. Exp. Bot. 64, 4839–4850 (2013).

    PubMed  Google Scholar 

  47. 47.

    Braun, D. M., Wang, L. & Ruan, Y. L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 65, 1713–1735 (2014).

    CAS  PubMed  Google Scholar 

  48. 48.

    Ma, S. et al. Phloem loading in cucumber: combined symplastic and apoplastic strategies. Plant J. 98, 391–404 (2019).

    CAS  PubMed  Google Scholar 

  49. 49.

    Chen, L. Q. et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207–211 (2012).

    CAS  PubMed  Google Scholar 

  50. 50.

    Truernit, E. & Sauer, N. The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of beta-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196, 564–570 (1995).

    CAS  PubMed  Google Scholar 

  51. 51.

    Wingenter, K. et al. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiol. 154, 665–677 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Sosso, D. et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat. Genet. 47, 1489–1493 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Wang, H. et al. A subsidiary cell-localized glucose transporter promotes stomatal conductance and photosynthesis. Plant Cell 31, 1328–1343 (2019).

    CAS  PubMed  Google Scholar 

  54. 54.

    Kryvoruchko, I. S. et al. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiol. 171, 554–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Yang, J., Luo, D., Yang, B., Frommer, W. B. & Eom, J. S. SWEET11 and 15 as key players in seed filling in rice. N. Phytol. 218, 604–615 (2018).

    CAS  Google Scholar 

  56. 56.

    Srivastava, A. C., Ganesan, S., Ismail, I. O. & Ayre, B. G. Functional characterization of the Arabidopsis AtSUC2 Sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol. 148, 200–211 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    van Dongen, J. T., Schurr, U., Pfister, M. & Geigenberger, P. Phloem metabolism and function have to cope with low internal oxygen. Plant Physiol. 131, 1529–1543 (2003).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Giaquinta, R. Mechanism and control of phloem loading of sucrose. Ber. Deut. Bot. Ges. 93, 197–201 (1980).

    Google Scholar 

  59. 59.

    Deeken, R. et al. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334–344 (2002).

    CAS  PubMed  Google Scholar 

  60. 60.

    Gajdanowicz, P. et al. Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity. N. Phytol. 182, 380–391 (2009).

    CAS  Google Scholar 

  61. 61.

    Gajdanowicz, P. et al. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc. Natl Acad. Sci. USA 108, 864–869 (2011).

    CAS  PubMed  Google Scholar 

  62. 62.

    Chen, L. Q. et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27, 607–619 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Zhang, Z. et al. Suppressing a putative sterol carrier gene reduces plasmodesmal permeability and activates sucrose transporter genes during cotton fiber elongation. Plant Cell 29, 2027–2046 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Grison, M. S. et al. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27, 1228–1250 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Yan, D. et al. Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. Nat. Plants 5, 604–615 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Kraner, M. E. et al. Choline transporter-like1 (CHER1) is crucial for plasmodesmata maturation in Arabidopsis thaliana. Plant J. 89, 394–406 (2017).

    CAS  PubMed  Google Scholar 

  67. 67.

    Bologa, K. L., Fernie, A. R., Leisse, A., Loureiro, M. E. & Geigenberger, P. A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol. 132, 2058–2072 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lu, M. Z., Snyder, R., Grant, J. & Tegeder, M. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools. Plant J. 101, 217–236 (2019).

    PubMed  Google Scholar 

  69. 69.

    Amthor, J. S. et al. Actionable engineering strategies to cut respiratory carbon loss and boost crop productivity. Plant Cell Environ. (in the press).

  70. 70.

    Wan, H., Wu, L., Yang, Y., Zhou, G. & Ruan, Y. L. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends Plant Sci. 23, 163–177 (2018).

    CAS  PubMed  Google Scholar 

  71. 71.

    Ruan, Y. L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 65, 33–67 (2014).

    CAS  PubMed  Google Scholar 

  72. 72.

    Barratt, D. H. et al. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc. Natl Acad. Sci. USA 106, 13124–13129 (2009).

    CAS  PubMed  Google Scholar 

  73. 73.

    Baroja-Fernandez, E. et al. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 50, 1651–1662 (2009).

    CAS  PubMed  Google Scholar 

  74. 74.

    Zhang, L. et al. Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol. J. 6, 453–464 (2008).

    CAS  PubMed  Google Scholar 

  75. 75.

    Geigenberger, P. et al. Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell 17, 2077–2088 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Regierer, B. et al. Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat. Biotechnol. 20, 1256–1260 (2002).

    CAS  PubMed  Google Scholar 

  77. 77.

    Slewinski, T. L. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. J. Exp. Bot. 63, 4647–4670 (2012).

    CAS  PubMed  Google Scholar 

  78. 78.

    Smidansky, E. D. et al. Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc. Natl Acad. Sci. USA 99, 1724–1729 (2002).

    CAS  PubMed  Google Scholar 

  79. 79.

    Fernie, A. R. Extending the cascade: identification of a mitogen-activated protein kinase phosphatase playing a key role in rice yield. Plant J. 95, 935–936 (2018).

    CAS  PubMed  Google Scholar 

  80. 80.

    Weber, H., Buchner, P., Borisjuk, L. & Wobus, U. Sucrose metabolism during cotyledon development of Vicia faba L is controlled by the concerted action of both sucrose-phosphate synthase and sucrose synthase: expression patterns, metabolic regulation and implications for seed development. Plant J. 9, 841–850 (1996).

    CAS  PubMed  Google Scholar 

  81. 81.

    Boyer, J. S. & McLaughlin, J. E. Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J. Exp. Bot. 58, 267–277 (2007).

    CAS  PubMed  Google Scholar 

  82. 82.

    Lauxmann, M. A. et al. Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth. Plant Cell Environ. 39, 745–767 (2016).

    CAS  PubMed  Google Scholar 

  83. 83.

    Liu, Y. H., Offler, C. E. & Ruan, Y. L. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiol. 172, 163–180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Seki, M. et al. A mathematical model of phloem sucrose transport as a new tool for designing rice panicle structure for high grain yield. Plant Cell Physiol. 56, 605–619 (2015).

    CAS  PubMed  Google Scholar 

  85. 85.

    Ruan, Y. L., Patrick, J. W., Bouzayen, M., Osorio, S. & Fernie, A. R. Molecular regulation of seed and fruit set. Trends Plant Sci. 17, 656–665 (2012).

    CAS  PubMed  Google Scholar 

  86. 86.

    Van Dingenen, J. et al. Limited nitrogen availability has cultivar-dependent effects on potato tuber yield and tuber quality traits. Food Chem. 288, 170–177 (2019).

    PubMed  Google Scholar 

  87. 87.

    Olas, J. J. et al. Nitrate acts at the Arabidopsis thaliana shoot apical meristem to regulate flowering time. N. Phytol. 223, 814–827 (2019).

    CAS  Google Scholar 

  88. 88.

    Tegeder, M. & Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. N. Phytol. 217, 35–53 (2018).

    Google Scholar 

  89. 89.

    Fan, X. et al. Plant nitrate transporters: from gene function to application. J. Exp. Bot. 68, 2463–2475 (2017).

    CAS  PubMed  Google Scholar 

  90. 90.

    O’Brien, J. A. et al. Nitrate transport, sensing, and responses in plants. Mol. Plant 9, 837–856 (2016).

    PubMed  Google Scholar 

  91. 91.

    Xuan, W., Beeckman, T. & Xu, G. Plant nitrogen nutrition: sensing and signaling. Curr. Opin. Plant Biol. 39, 57–65 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Wang, L. & Ruan, Y.-L. Shoot–root carbon allocation, sugar signalling and their coupling with nitrogen uptake and assimilation. Funct. Plant Biol. 43, 105–113 (2016).

    CAS  Google Scholar 

  93. 93.

    Habash, D. Z., Bernard, S., Schondelmaier, J., Weyen, J. & Quarrie, S. A. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor. Appl. Genet. 114, 403–419 (2007).

    CAS  PubMed  Google Scholar 

  94. 94.

    Martin, A. et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18, 3252–3274 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Cai, H. et al. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 28, 527–537 (2009).

    CAS  PubMed  Google Scholar 

  96. 96.

    Bao, A. et al. Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS ONE 9, e95581 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    James, D. et al. Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to abiotic stresses. Front. Plant Sci. 9, 786 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Hu, M. et al. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol. J. 16, 1858–1867 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Yamaya, T. et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Exp. Bot. 53, 917–925 (2002).

    CAS  PubMed  Google Scholar 

  100. 100.

    Tabuchi, M., Abiko, T. & Yamaya, T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J. Exp. Bot. 58, 2319–2327 (2007).

    CAS  PubMed  Google Scholar 

  101. 101.

    Ameziane, R., Bernhard, K. & Lightfoot, D. Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil 22, 147–157 (2000).

    Google Scholar 

  102. 102.

    Abiko, T. et al. Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Planta 232, 299–311 (2010).

    CAS  PubMed  Google Scholar 

  103. 103.

    Zhou, Y. et al. Over-expression of a fungal NADP (H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol. Breed. 34, 335–349 (2014).

    Google Scholar 

  104. 104.

    Seiffert, B., Zhou, Z., Wallbraun, M., Lohaus, G. & Möllers, C. Expression of a bacterial asparagine synthetase gene in oilseed rape (Brassica napus) and its effect on traits related to nitrogen efficiency. Physiol. Plant. 121, 656–665 (2004).

    CAS  Google Scholar 

  105. 105.

    Thomsen, H. C., Eriksson, D., Moller, I. S. & Schjoerring, J. K. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci. 19, 656–663 (2014).

    CAS  PubMed  Google Scholar 

  106. 106.

    Good, A. et al. Engineering nitrogen use efficiency with alanine aminotransferase. Can. J. Bot. 85, 252–262 (2007).

    CAS  Google Scholar 

  107. 107.

    Shrawat, A. K., Carroll, R. T., DePauw, M., Taylor, G. J. & Good, A. G. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol. J. 6, 722–732 (2008).

    CAS  PubMed  Google Scholar 

  108. 108.

    Beatty, P. H., Carroll, R. T., Shrawat, A. K., Guevara, D. & Good, A. G. Physiological analysis of nitrogen-efficient rice overexpressing alanine aminotransferase under different N regimes. Botany 91, 866–883 (2013).

    CAS  Google Scholar 

  109. 109.

    Pena, P. A. et al. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase. Planta 246, 1097–1107 (2017).

    CAS  PubMed  Google Scholar 

  110. 110.

    Snyman, S. J., Hajari, E., Watt, M. P., Lu, Y. & Kridl, J. C. Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep. 34, 667–669 (2015).

    CAS  PubMed  Google Scholar 

  111. 111.

    Miyashita, Y., Dolferus, R., Ismond, K. P. & Good, A. G. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J. 49, 1108–1121 (2007).

    CAS  PubMed  Google Scholar 

  112. 112.

    McAllister, C. H. & Good, A. G. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS ONE 10, e0121830 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Santiago, J. P. & Tegeder, M. Connecting source with sink: the role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol. 171, 508–521 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Zhang, L., Garneau, M. G., Majumdar, R., Grant, J. & Tegeder, M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J. 81, 134–146 (2015).

    CAS  PubMed  Google Scholar 

  115. 115.

    Tan, Q., Zhang, L., Grant, J., Cooper, P. & Tegeder, M. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol. 154, 1886–1896 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Carter, A. M. & Tegeder, M. Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Curr. Biol. 26, 2044–2051 (2016).

    CAS  PubMed  Google Scholar 

  117. 117.

    Nunes-Nesi, A., Fernie, A. R. & Stitt, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 3, 973–996 (2010).

    CAS  PubMed  Google Scholar 

  118. 118.

    Vincentz, M., Moureaux, T., Leydecker, M. T., Vaucheret, H. & Caboche, M. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 3, 315–324 (1993).

    CAS  PubMed  Google Scholar 

  119. 119.

    Athwal, G. S., Huber, J. L. & Huber, S. C. Phosphorylated nitrate reductase and 14-3-3 proteins. Site of interaction, effects of ions, and evidence for an amp-binding site on 14-3-3 proteins. Plant Physiol. 118, 1041–1048 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Bachmann, M., Huber, J. L., Liao, P. C., Gage, D. A. & Huber, S. C. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. FEBS Lett. 387, 127–131 (1996).

    CAS  PubMed  Google Scholar 

  121. 121.

    Bachmann, M., McMichael, R. W. Jr., Huber, J. L., Kaiser, W. M. & Huber, S. C. Partial purification and characterization of a calcium-dependent protein kinase and an inhibitor protein required for inactivation of spinach leaf nitrate reductase. Plant Physiol. 108, 1083–1091 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Bachmann, M. et al. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8, 505–517 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Kaiser, W. M. & Huber, S. C. Posttranslational regulation of nitrate reductase in higher plants. Plant Physiol. 106, 817–821 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Figueroa, C. M. et al. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant J. 85, 410–423 (2016).

    CAS  PubMed  Google Scholar 

  125. 125.

    Murchie, E. H., Ferrario-Mery, S., Valadier, M. H. & Foyer, C. H. Short-term nitrogen-induced modulation of phosphoenolpyruvate carboxylase in tobacco and maize leaves. J. Exp. Bot. 51, 1349–1356 (2000).

    CAS  PubMed  Google Scholar 

  126. 126.

    Le Van, Q. & Champigny, M. L. NO(3) enhances the kinase activity for phosphorylation of phosphoenolpyruvate carboxylase and sucrose phosphate synthase proteins in wheat leaves: evidence from the effects of mannose and okadaic acid. Plant Physiol. 99, 344–347 (1992).

    Google Scholar 

  127. 127.

    Perchlik, M. & Tegeder, M. Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiol. 175, 235–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Perchlik, M. & Tegeder, M. Leaf amino acid supply affects photosynthetic and plant nitrogen use efficiency under nitrogen stress. Plant Physiol. 178, 174–188 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Stitt, M. & Sonnewald, U. Regulation of metabolism in transgenic plants. Ann. Rev. Plant Physiol. Mol. Biol. 46, 341–336 (1995).

    CAS  Google Scholar 

  130. 130.

    Baena-Gonzalez, E., Rolland, F., Thevelein, J. M. & Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942 (2007).

    CAS  PubMed  Google Scholar 

  131. 131.

    Shi, L., Wu, Y. & Sheen, J. TOR signaling in plants: conservation and innovation. Development 145, dev160887 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Xiong, Y. et al. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181–186 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Chen, X. et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 26, 640–646 (2016).

    CAS  PubMed  Google Scholar 

  134. 134.

    Kurai, T. et al. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol. J. 9, 826–837 (2011).

    CAS  PubMed  Google Scholar 

  135. 135.

    Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H. & Miwa, T. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc. Natl Acad. Sci. USA 101, 7833–7838 (2004).

    CAS  PubMed  Google Scholar 

  136. 136.

    Marchive, C. et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 4, 1713 (2013).

    PubMed  Google Scholar 

  137. 137.

    Gaudinier, A. et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563, 259–264 (2018).

    CAS  PubMed  Google Scholar 

  138. 138.

    Liu, K. H. et al. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 545, 311–316 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Guan, P. et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc. Natl Acad. Sci. USA 114, 2419–2424 (2017).

    CAS  PubMed  Google Scholar 

  140. 140.

    Olas, J. J. & Wahl, V. Tissue-specific NIA1 and NIA2 expression in Arabidopsis thaliana. Plant Signal. Behav. 14, 1656035 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Navarro, C. et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478, 119–122 (2011).

    CAS  PubMed  Google Scholar 

  142. 142.

    Kloosterman, B. et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495, 246–250 (2013).

    CAS  PubMed  Google Scholar 

  143. 143.

    Abelenda, J. A., Cruz-Oro, E., Franco-Zorrilla, J. M. & Prat, S. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Curr. Biol. 26, 872–881 (2016).

    CAS  PubMed  Google Scholar 

  144. 144.

    Sharma, P., Lin, T. & Hannapel, D. J. Targets of the StBEL5 transcription factor include the FT ortholog StSP6A. Plant Physiol. 170, 310–324 (2016).

    CAS  PubMed  Google Scholar 

  145. 145.

    Kondhare, K. R., Vetal, P. V., Kalsi, H. S. & Banerjee, A. K. BEL1-like protein (StBEL5) regulates CYCLING DOF FACTOR1 (StCDF1) through tandem TGAC core motifs in potato. J. Plant Physiol. 241, 153014 (2019).

    CAS  PubMed  Google Scholar 

  146. 146.

    Banerjee, A. K., Prat, S. & Hannapel, D. J. Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci. 170, 732–738 (2006).

    CAS  Google Scholar 

  147. 147.

    Gonzalez-Schain, N. D., Diaz-Mendoza, M., Zurczak, M. & Suarez-Lopez, P. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J. 70, 678–690 (2012).

    CAS  PubMed  Google Scholar 

  148. 148.

    Hannapel, D. J. & Banerjee, A. K. Multiple mobile mRNA signals regulate tuber development in potato. Plants 6, 8 (2017).

    PubMed Central  Google Scholar 

  149. 149.

    Taoka, K. et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332–335 (2011).

    CAS  PubMed  Google Scholar 

  150. 150.

    Teo, C. J., Takahashi, K., Shimizu, K., Shimamoto, K. & Taoka, K. I. Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant Cell Physiol. 58, 365–374 (2017).

    CAS  PubMed  Google Scholar 

  151. 151.

    Lunn, J. E. et al. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem. J. 397, 139–148 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Figueroa, C. M. & Lunn, J. E. A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol. 172, 7–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Eastmond, P. J. et al. Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J. 29, 225–235 (2002).

    CAS  PubMed  Google Scholar 

  154. 154.

    Gomez, L. D., Gilday, A., Feil, R., Lunn, J. E. & Graham, I. A. AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J. 64, 1–13 (2010).

    CAS  PubMed  Google Scholar 

  155. 155.

    van Dijken, A. J., Schluepmann, H. & Smeekens, S. C. Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol. 135, 969–977 (2004).

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Wahl, V. et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339, 704–707 (2013).

    CAS  PubMed  Google Scholar 

  157. 157.

    Sanz, M. J., Mingo Castel, A., van Lammeren, A. A. M. & Vreugdenhil, D. Changes in the microtubular cytoskeleton precede in vitro tuber formation in potato. Protoplasma 191, 46–54 (1996).

    Google Scholar 

  158. 158.

    Chincinska, I. A. et al. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol. 146, 515–528 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Abelenda, J. A. et al. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Curr. Biol. 29, 1178–1186 (2019).

    CAS  PubMed  Google Scholar 

  160. 160.

    Viola, R. et al. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13, 385–398 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Hancock, R. D. et al. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 37, 439–450 (2014).

    CAS  PubMed  Google Scholar 

  162. 162.

    Hastilestari, B. R. et al. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell Environ. 41, 2600–2616 (2018).

    CAS  PubMed  Google Scholar 

  163. 163.

    Lehretz, G. G., Sonnewald, S., Hornyik, C., Corral, J. M. & Sonnewald, U. Post-transcriptional Regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr. Biol. 29, 1614–1624 (2019).

    CAS  PubMed  Google Scholar 

  164. 164.

    Fridman, E., Carrari, F., Liu, Y. S., Fernie, A. R. & Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305, 1786–1789 (2004).

    CAS  PubMed  Google Scholar 

  165. 165.

    Bermudez, L. et al. Silencing of the tomato sugar partitioning affecting protein (SPA) modifies sink strength through a shift in leaf sugar metabolism. Plant J. 77, 676–687 (2014).

    CAS  PubMed  Google Scholar 

  166. 166.

    Soyk, S. et al. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169, 1142–1155 (2017).

    CAS  PubMed  Google Scholar 

  167. 167.

    Soyk, S. et al. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat. Genet. 49, 162–168 (2017).

    CAS  PubMed  Google Scholar 

  168. 168.

    Park, S. J. et al. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat. Genet. 46, 1337–1342 (2014).

    CAS  PubMed  Google Scholar 

  169. 169.

    Liu, J. et al. The conserved and unique genetic architecture of kernel zize and weight in maize and rice. Plant Physiol. 175, 774–785 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. 170.

    Siebers, T., Catarino, B. & Agusti, J. Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta). Planta 245, 539–548 (2017).

    CAS  PubMed  Google Scholar 

  171. 171.

    Hannapel, D. J., Sharma, P., Lin, T. & Banerjee, A. K. The multiple signals that control tuber formation. Plant Physiol. 174, 845–856 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Villordon, A. Q., Ginzberg, I. & Firon, N. Root architecture and root and tuber crop productivity. Trends Plant Sci. 19, 419–425 (2014).

    CAS  PubMed  Google Scholar 

  173. 173.

    Smetana, O. et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565, 485–489 (2019).

    CAS  PubMed  Google Scholar 

  174. 174.

    Shi, D., Lebovka, I., Lopez-Salmeron, V., Sanchez, P. & Greb, T. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 146, dev171355 (2019).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Eviatar-Ribak, T. et al. A cytokinin-activating enzyme promotes tuber formation in tomato. Curr. Biol. 23, 1057–1064 (2013).

    CAS  PubMed  Google Scholar 

  176. 176.

    Matsumoto-Kitano, M. et al. Cytokinins are central regulators of cambial activity. Proc. Natl Acad. Sci. USA 105, 20027–20031 (2008).

    CAS  PubMed  Google Scholar 

  177. 177.

    Etchells, J. P. & Turner, S. R. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137, 767–774 (2010).

    CAS  PubMed  Google Scholar 

  178. 178.

    Miyashima, S. et al. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565, 490–494 (2019).

    CAS  PubMed  Google Scholar 

  179. 179.

    Gancheva, M. S. et al. Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root. BMC Plant Biol. 16(Suppl. 1), 7 (2016).

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Kaachra, A., Vats, S. K. & Kumar, S. Heterologous expression of key C and N metabolic enzymes improves re-assimilation of photorespired CO2 and NH3, and growth. Plant Physiol. 177, 1396–1409 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Naqvi, S. et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl Acad. Sci. USA 106, 7762–7767 (2009).

    CAS  PubMed  Google Scholar 

  182. 182.

    Bachem, C. W. B., van Eck, H. J. & de Vries, M. E. Understanding genetic load in potato for hybrid diploid breeding. Mol. Plant 12, 896–898 (2019).

    CAS  PubMed  Google Scholar 

  183. 183.

    Zhang, C. et al. The genetic basis of inbreeding depression in potato. Nat. Genet. 51, 374–378 (2019).

    CAS  PubMed  Google Scholar 

  184. 184.

    Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).

    CAS  PubMed  Google Scholar 

  185. 185.

    Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).

    CAS  PubMed  Google Scholar 

  186. 186.

    Mehdi, R. et al. Symplasmic phloem unloading and radial post-phloem transport via vascular rays in tuberous roots of Manihot esculenta. J. Exp. Bot. 70, 5559–5573 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Ikematsu, S., Tasaka, M., Torii, K. U. & Uchida, N. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. N. Phytol. 213, 1697–1709 (2017).

    CAS  Google Scholar 

  188. 188.

    Kubo, M. et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855–1860 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Knott, J. M., Romer, P. & Sumper, M. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett. 581, 3081–3086 (2007).

    CAS  PubMed  Google Scholar 

  190. 190.

    Ge, C. et al. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res. 16, 446–456 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratories was supported by the following grants: the cassava source–sink (CASS) project of the Bill and Melinda Gates Foundation (to A.R.F., H.E.N., M.S. and U.S.); the ERA-CAPs project SourSi (to A.R.F. and L.J.S.); the BIO2015-3019-EXP grant from the Spanish Ministry of Economy, Industry and Competitiveness and the PCIN-2017-032 CONCERT-JAPAN project financed by the Ministry of Science, Innovation and Universities (to S.P.); Australian Research Council DP180103834 (to Y.L.R.); the US National Science Foundation (grant no. IOS-1457183); the Agriculture and Food Research Initiative (AFRI; grant no. 2017-67013-26158) from the USDA National Institute of Food and Agriculture (to M.T.); the Finnish Centre of Excellence in Molecular Biology of Primary Producers (Academy of Finland CoE program 2014–2019; grant no. 271832); the Gatsby Foundation (grant no. GAT3395/PR3); the University of Helsinki (grant no. 799992091); the European Research Council Advanced Investigator Grant SYMDEV (grant no. 323052; to Y.H.); the BMBF (grant no. 031B0191); the DFG (SPP1530: WA3639/1-2, 2-1); and the Max-Planck-Society (to V.W.). We additionally thank D. Ko and R. Ruonala for their comments on the manuscript.

Author information

Affiliations

Authors

Contributions

The conceptual framework for this Review was developed by A.R.F., S.S. and U.S. A.R.F., C.W.B.B., Y.H., H.E.N., S.P., Y.L.R., M.S., L.J.S., M.T., V.W., S.S. and U.S. contributed sections of the manuscript and read and discussed the final version of the manuscript.

Corresponding authors

Correspondence to Alisdair R. Fernie or Sophia Sonnewald or Uwe Sonnewald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Christine Foyer and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernie, A.R., Bachem, C.W.B., Helariutta, Y. et al. Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nat. Plants 6, 55–66 (2020). https://doi.org/10.1038/s41477-020-0590-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing