Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis

Abstract

DNA methylation is an important epigenetic gene regulatory mechanism conserved in eukaryotes. Emerging evidence shows DNA methylation alterations in response to environmental cues. However, the mechanism of how cells sense these signals and reprogramme the methylation landscape is poorly understood. Here, we uncovered a connection between ultraviolet B (UVB) signalling and DNA methylation involving UVB photoreceptor (UV RESISTANCE LOCUS 8 (UVR8)) and a de novo DNA methyltransferase (DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2)) in Arabidopsis. We demonstrated that UVB acts through UVR8 to inhibit DRM2-mediated DNA methylation and transcriptional de-repression. Interestingly, DNA transposons with high DNA methylation are more sensitive to UVB irradiation. Mechanistically, UVR8 interacts with and negatively regulates DRM2 by preventing its chromatin association and inhibiting the methyltransferase activity. Collectively, this study identifies UVB as a potent inhibitor of DNA methylation and provides mechanistic insights into how signalling transduction cascades intertwine with chromatin to guide genome functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: UVB induces DNA hypomethylation in a UVR8-dependent manner.
Fig. 2: UVB induces genome-wide CHH hypomethylation.
Fig. 3: UVB and DRM2 regulate expression of TEs.
Fig. 4: DRM2 interacts with UVR8 in vitro and in vivo.
Fig. 5: UBA domains of DRM2 mediate its interaction with UVR8.
Fig. 6: UVR8 inhibits the methyltransferase activity and chromatin association of DRM2.

Similar content being viewed by others

Data availability

All whole-genomic bisulfite sequencing and RNA-seq data produced during this study were deposited into the Gene Expression Omnibus under accession number GSE132944. Source data are provided with this paper.

References

  1. Pikaard, C. S. & Scheid, O. M. Epigenetic regulation in plants. Cold Spring Harb. Perspect. Biol. 6, a019315 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  PubMed  Google Scholar 

  3. Heyn, H. & Esteller, M. An adenine code for DNA: a second life for N6-methyladenine. Cell 161, 710–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 18, 563–575 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Bewick, A. J. & Schmitz, R. J. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 36, 103–110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, H., Lang, Z. & Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Matzke, M. A., Kanno, T. & Matzke, A. J. M. M. RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant Biol. 66, 243–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727–741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farlik, M. et al. Resource DNA methylation dynamics of human hematopoietic stem cell differentiation. Cell Stem Cell 19, 808–822 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergman, Y. & Cedar, H. DNA methylation dynamics in health and disease. Nat. Struct. Mol. Biol. 20, 274–281 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Dominguez-Salas, P. et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Kawakatsu, T. et al. Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat. Plants 2, 16058 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hossain, M. S. et al. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. N. Phytol. 214, 808–819 (2017).

    Article  CAS  Google Scholar 

  17. Kim, G. et al. Herbicide injury induces DNA methylome alterations in Arabidopsis. PeerJ 5, e3560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dowen, R. H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl Acad. Sci. USA 109, E2183–E2191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, A. et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl Acad. Sci. USA 110, 2389–2394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, P., Chen, H., Jin, J. & Cai, W. Single-base resolution methylome analysis shows epigenetic changes in Arabidopsis seedlings exposed to microgravity spaceflight conditions on board the SJ-10 recoverable satellite. NPJ Microgravity 4, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou, M., Sng, N. J., LeFrois, C. E., Paul, A.-L. L. & Ferl, R. J. Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics 20, 205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Robson, T. M. et al. A perspective on ecologically relevant plant-UV research and its practical application. Photochem. Photobiol. Sci. 18, 970–988 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Yin, R. & Ulm, R. How plants cope with UV-B: from perception to response. Curr. Opin. Plant Biol. 37, 42–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8. Protein Sci. 332, 103–106 (2011).

    CAS  Google Scholar 

  25. Wu, D. et al. Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214–219 (2012).

    Article  PubMed  Google Scholar 

  26. Kaiserli, E. & Jenkins, G. I. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19, 2662–2673 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heijde, M. & Ulm, R. Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc. Natl Acad. Sci. USA 110, 1113–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Liang, T. et al. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev. Cell 44, 512–523 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, Y. et al. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat. Plants 4, 98–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Y. et al. UV-B photoreceptor UVR 8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J. 39, e101928 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Qian, C. et al. Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Mol. Plant 13, 777–792 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Rius, S. P., Emiliani, J. & Casati, P. P1 epigenetic regulation in leaves of high altitude maize landraces: effect of UV-B radiation. Front. Plant Sci. 7, 523 (2016).

    Google Scholar 

  33. Mishra, A. et al. Genetic differences and aberrant methylation in the apelin system predict the risk of high-altitude pulmonary edema. Proc. Natl Acad. Sci. USA 112, 6134–6139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhong, X. et al. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157, 1050–1060 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dinh, T. T. et al. Generation of a luciferase-based reporter for CHH and CG DNA methylation in Arabidopsis thaliana. Silence 4, 1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henderson, I. R. & Jacobsen, S. E. Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev. 22, 1597–1606 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McNellis, T. W., Torii, K. U. & Deng, X.-W. Expression of an N-terminal fragment of COP1 confers a dominant-negative effect on light-regulated seedling development in Arabidopsis. Plant Cell 8, 1491–1503 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chan, S. W. L., Zhang, X., Bernatavichute, Y. V. & Jacobsen, S. E. Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol. 4, 1923–1933 (2006).

    Article  CAS  Google Scholar 

  39. Heijde, M. et al. Constitutively active UVR8 photoreceptor variant in Arabidopsis. Proc. Natl Acad. Sci. USA 110, 20326–20331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Graindorge, S., Cognat, V., Berens, P. J., Mutterer, J. & Molinier, J. Photodamage repair pathways contribute to the accurate maintenance of the DNA methylome landscape upon UV exposure. PLoS Genetics 15, e1008476 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Cao, X. et al. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl Acad. Sci. USA 97, 4979–4984 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yin, R., Arongaus, A. B., Binkert, M. & Ulm, R. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis. Plant Cell 27, 202–213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, C. F. et al. Dynamic regulation of ARGONAUTE4 within multiple nuclear bodies in Arabidopsis thaliana. PLoS Genet. 4, e27 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ohlsson, A. B., Segerfeldt, P., Lindström, A., Borg-Karlson, A.-K. & Berglund, T. UV-B exposure of indoor-grown Picea abies seedlings causes an epigenetic effect and selective emission of terpenes. Z. Naturforsch. C 68, 139–147 (2013).

    CAS  PubMed  Google Scholar 

  47. Pandey, N. & Pandey-Rai, S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242, 869–879 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Qüesta, J. I., Walbot, V. & Casati, P. Mutator transposon activation after UV-B involves chromatin remodeling. Epigenetics 5, 352–363 (2010).

    Article  PubMed  Google Scholar 

  49. Lang-Mladek, C. et al. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol. Plant 3, 594–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marfil, C. et al. Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. Plant Physiol. Biochem. 135, 287–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, X. et al. Effects of ultraviolet B exposure on DNA methylation in patients with systemic lupus erythematosus. Exp. Ther. Med. 5, 1219–1225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pavet, V., Quintero, C., Cecchini, N. M., Rosa, A. L. & Alvarez, M. E. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol. Plant Microbe Interact. 19, 577–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Secco, D. et al. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 4, e09343 (2015).

    Article  PubMed Central  Google Scholar 

  54. Aina, R. et al. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol. Plant. 121, 472–480 (2004).

    Article  CAS  Google Scholar 

  55. Greco, M., Chiappetta, A., Bruno, L. & Bitonti, M. B. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J. Exp. Bot. 63, 695–709 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Gao, Z. et al. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465, 106–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Azevedo, J. et al. UAP56 associates with DRM2 and is localized to chromatin in Arabidopsis. FEBS Open Bio 9, 973–985 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sasaki, T., Lorković, Z. J., Liang, S. C., Matzke, A. J. M. & Matzke, M. The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation. PLoS ONE 9, e88190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dangwal, M., Malik, G., Kapoor, S. & Kapoor, M. De novo methyltransferase, OsDRM2, interacts with the ATP-dependent RNA helicase, OseIF4A, in rice. J. Mol. Biol. 425, 2853–2866 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Zhou, S. et al. Cooperation between the H3K27me3 chromatin mark and non-CG methylation in epigenetic regulation. Plant Physiol. 172, 1131–1141 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rajavelu, A. et al. Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Nucleic Acids Res. 46, 9044–9056 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zientara-Rytter, K. & Sirko, A. Significant role of PB1 and UBA domains in multimerization of Joka2, a selective autophagy cargo receptor from tobacco. Front. Plant Sci. 5, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Raasi, S., Varadan, R., Fushman, D. & Pickart, C. M. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat. Struct. Mol. Biol. 12, 708–714 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Sadowski, M., Suryadinata, R., Tan, A. R., Roesley, S. N. A. & Sarcevic, B. Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life 64, 136–142 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Walbot, V. UV-B damage amplified by transposons in maize. Nature 397, 398–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, T. et al. Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc. Natl Acad. Sci. USA 116, 7137–7146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Quadrana, L. & Colot, V. Plant transgenerational epigenetics. Annu. Rev. Genet. 50, 467–491 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Niu, X. et al. Transposable elements drive rapid phenotypic variation in Capsella rubella. Proc. Natl Acad. Sci. USA 116, 6908–6913 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moissiard, G. et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336, 1448–1451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eun, C. et al. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana. PLoS ONE 6, e25730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinform. 10, 232 (2009).

    Article  Google Scholar 

  72. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stroud, H., Greenberg, M. V. C., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Law, J. A. et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498, 385–389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tavridou, E., Pireyre, M. & Ulm, R. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis. Plant J. 101, 507–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Zhong, X. et al. DOMAINS REARRANGED METHYLTRANSFERASE3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 911–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Du, J. et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Law, J. A. et al. A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis. Curr. Biol. 20, 951–956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ausin, I. et al. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis. Proc. Natl Acad. Sci. USA 109, 8374–8381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, X. et al. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. eLife 5, e17214 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mayer, K. S. et al. HDA9-PWR-HOS15 is a core histone deacetylase complex regulating transcription and development. Plant Physiol. 180, 342–355 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, X. et al. Canonical and noncanonical actions of Arabidopsis histone deacetylases in ribosomal RNA processing. Plant Cell 30, 134–152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, Z. et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat. Genet. 50, 1247–1253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Jacobsen (University of California, Los Angeles) for pSDC:GFP/cmt3 and X. Chen (University of California, Riverside) for d35S:LUC reporter lines. We thank Zhong laboratory members (A. Ding, S. Leichter and R. Scheid) for comments on the manuscript. This work was supported by the NIH (grant no. R35GM124806) and the USDA (grant no. Hatch 1012915) to X.Z. and the NIH (grant no. 1R35GM119721) to J.S. J.J. was supported by the Initiative Postdocs Supporting Program (grant no. BX201600066).

Author information

Authors and Affiliations

Authors

Contributions

J.J. designed and performed most experiments, analysed data, prepared figures and wrote the manuscript draft. J.L. and D.S. performed the genomic data analysis. S.Q. provided reagents and edited the manuscript. W.R. and J.S. provided recombinant DRM2 proteins. F.L. conceived the project and edited the manuscript. X.Z. conceived the project, designed experiments, analysed data and wrote the manuscript.

Corresponding authors

Correspondence to Fengquan Liu or Xuehua Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Hongtao Liu, Jean Molinier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of LUCM reporter line.

a, Luciferase images of Col-0 and three d35S:LUC reporter lines treated with DNA methylation inhibitor 5-Azacytidine (5-AzaC, 100 μM) for 7 days. LUCL and LUCH are previously reported (ref. 35) low and high LUC expressing lines, respectively. b, Copy number of 35S-LUC transgene in LUCL, LUCH, and LUCM lines revealed by qPCR of LUC using genomic DNA. Data is mean ± SD. c, McrBC-qPCR based DNA methylation assay of 35S promoter regions in LUCL, LUCH, and LUCM lines. Low amplification represents high DNA methylation level. Data is mean ± SD. **p < 0.01; ***p < 0.001 by Student’s t-test. d, Relative transcript level of LUC gene in LUCL, LUCH, and LUCM lines. Data is mean ± SD. ***p < 0.001 by Student’s t-test. e, Bisulfite sequencing of indicated regions (1 and 2) in LUCL, LUCH, and LUCM lines. f, Luciferase images of 5-d old LUCM and dd LCUM (drm1 drm2 LUCM) seedlings. g, McrBC-qPCR based DNA methylation assay of 35S promoter regions. SDC serves as a control for dd. Data is mean ± SD. ***p < 0.001 by Student’s t-test.

Extended Data Fig. 2 Flowering phenotypes of FWA transgenic plants.

a and b, The flowering time of FWA transgenic T1 plants from two replicates with replicate 1 in (a) and replicate 2 in (b). Indicated genotypes were transformed with FWA transgene and the flowering time of positive Basta-resistant T1 transformants were counted. The non-transformed plants serve as controls. The number of plants is indicated by n. dd, drm1 drm2; udd, uvr8-6 drm1 drm2; UVR8-OX, 35S:UVR8-FLAG overexpression lines (#3 and #2); UVR8W285A-OX, 35S:UVR8W285A-FLAG overexpression lines (#5 and #8). The blue dash line indicates median. Each dot represents a single plant. Significantly different (p < 0.05 by Student’s t-test) groups are labelled with different letters.

Extended Data Fig. 3 Analysis of UVB-induced differentially methylated regions.

a,b, Venn diagrams showing the overlap of CHH hypo differential methylation regions (DMRs) among drm1 drm2 (dd), cmt2-3, and UVB-induced DMRs in Col-0 (a) and UVR8-OX (b). Data of dd and cmt2-3 are from ref. 77. c, Venn diagrams showing the overlap of CHH hypo DMRs among UVB-treated Col-0 (left) or UVR8-OX (right), dd, and drm2-2 mutant. Data of drm2-2 is from ref. 78. d, Venn diagrams showing the overlap of UVB-induced CHH hypo DMRs in Col-0 with hyper DMRs in uvr8-6 mutant. e, Venn diagrams showing the overlap of UVB-induced CHH hypo DMRs in Col-0 and uvr8-6. f, The enrichment of TEs containing CHH hypo DMRs based on length. ***, p < 0.001 by Fisher’s exact test. g, The enrichment of Class II (DNA) TEs containing CHH hypo DMRs. ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant by Fisher’s exact test.

Extended Data Fig. 4 Comparison of UVB- and UVC-induced DMRs.

a, Comparison of CHH hypo DMRs by UVC treated Col-0 (compared to Col-0 without treatment) and drm1 drm2 (dd). The UVC-induced DMRs are from ref. 41 (GSE132750). b, Comparison of UVB- and UVC-induced CHH hypo DMRs in Col-0. c, Comparison of CHH hypo DMRs of UVB treated UVR8-OX (compared with Col-0,WL) and UVC. d, Overlapping of CHH hypo DMRs of UVB treated UVR8-OX (compared with UVR8-OX,WL) and UVC.

Extended Data Fig. 5 Differential expressed genes (DEG) induced by UVB.

a, Venn diagram showing the overlapping of DEGs induced by UVB in Col-0 and drm1 drm2 (dd). b, Correlation plot showing the expression level change (log2FC) of common UVB-responsive DEGs in Col-0 and dd (n = 327). c, Expression levels of marker genes, which are up-regulated by UVB, in Col-0 and dd. Data is mean with 95% confidence interval. d, Expression levels of DNA-damage induced genes in Col-0 and dd. Data is mean with 95% confidence interval. e, Expression levels of genes in UVB-signaling pathway. Data is mean with 95% confidence interval. Different letters denote significant differences (p < 0.05 by Student’s t-test) among samples. f, Venn diagram showing the overlapping of DEGs induced by long-term (10d, this study) and short-term (6 h, ref. 79) UVB treatment in Col-0. g and h, Heat map showing the expression of several UVB up-regulated (g) and down-regulated (h) DEGs in both long-term and short-term UVB treatment. i, Metaplots showing the CHH methylation level of UVB up-regulated TEs (n = 269). Data of 1 kb upstream and downstream of the TE body are shown.

Extended Data Fig. 6 DRM2 interacts with UVR8 and its active form UVR8W285A.

a, Heatmap showing the NSAF score (an indicator of normalized spectral abundance factor) of UVR8 and DRM2 in various immunoprecipitation-mass spectrometry (IP-MS) experiments. The IP-MS data of DRM2 is from ref. 34, DRM3 and NRPE1 are from ref. 80, CMT3 is from ref. 81, DRD1 and DMS3 are from ref. 82, MORC6 is from ref. 69, IDN2 is from ref. 83, HDA9 and PWR are from ref. 84, HOS15 is from ref. 85, HD2C is from ref. 86, EBS is from ref. 87. b, Coomassie bright blue staining of non-boiled GST-UVR8 proteins on SDS-PAGE. The GST-UVR8W285A proteins serve as control for monomer. c, Co-immunoprecipitation of UVR8 and DRM2 with FLAG beads from N. benthamiana leaves co-expressing UVR8-HA and DRM2-FLAG. d, Co-immunoprecipitation of UVR8 and DRM2 with FLAG beads from transgenic Arabidopsis plants co-expressing UVR8-HA and 3F9M-DRM2. UVR8-HA in Col-0 serves as a control. e, Immunoblots showing protein levels with or without UVB treatment. The ±UVB set-up is the same as that in Fig. 4g. Actin serves as an internal control. f, Split luciferase assay showing the interaction between DRM2 and UVR8W285A. The indicated constructs were co-expressed in N. benthamiana leaves and imaged after spraying with the luciferin. nLuc- and cLuc-only vectors serve as negative controls. Two biological replicates are shown. g, Bimolecular fluorescence complementation (BIFC) assays in N. benthamiana leaves showing the interaction between DRM2 and different forms of UVR8. Scale bar, 10 μm. h, BIFC assays co-expressing indicated proteins in N. benthamiana leaves. Scale bar, 10 μm.

Extended Data Fig. 7 DRM2 interacts with both the core domain and the C-terminus of UVR8.

a, Bimolecular fluorescence complementation (BIFC) assays in N. benthamiana leaves. nYFP-fused full length UVR8, UVR8 core domain (UVR8N396), and C-terminus (UVR8C44) were co-expressed with DRM2-cYFP. The arrow indicates the nuclei showing nuclear bodies. Scale bar, 10 μm. b, Magnified images showing the interaction of UVR8-DRM2, UVR8N396-DRM2 in nuclear bodies. Scale bar, 10 μm.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–5, Tables 1–3, descriptions for Supplementary Data 1–3, and references.

Reporting Summary

Supplementary Data 1

This table includes the lists of proteins identified in two biological replicates (Experiment 1 and Experiment 2). The transgenic lines used are 3F9M-DRM2 (3xFLAG-9xMyc-BLRP-DRM2). The DRM2-9NK is 3F9M-DRM2 carrying a mutation in BLRP motif.

Supplementary Data 2

UVB-induced CHH DMRs.

Supplementary Data 3

This table lists the expression data of all genes in RNA-seq. The expression data are the average of two biological experiments. Significance is defined by Q value ≤ 0.05 by Cufflinks.

Source data

Source Data Fig. 1

Full scans of western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Liu, J., Sanders, D. et al. UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nat. Plants 7, 184–197 (2021). https://doi.org/10.1038/s41477-020-00843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-00843-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing