Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CUL3 E3 ligases in plant development and environmental response

Abstract

Thirty years of research have revealed the fundamental role of the ubiquitin–proteasome system in diverse aspects of cellular regulation in eukaryotes. The ubiquitin–protein ligases or E3s are central to the ubiquitin–proteasome system since they determine the specificity of ubiquitylation. The cullin–RING ligases (CRLs) constitute one large class of E3s that can be subdivided based on the cullin isoform and the substrate adapter. SCF complexes, composed of CUL1 and the SKP1/F-box protein substrate adapter, are perhaps the best characterized in plants. More recently, accumulating evidence has demonstrated the essential roles of CRL3 E3s, consisting of a CUL3 protein and a BTB/POZ substrate adaptor. In this Review, we describe the variety of CRL3s functioning in plants and the wide range of processes that they regulate. Furthermore, we illustrate how different classes of E3s may cooperate to regulate specific pathways or processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Subunit composition of CRLs in plants.
Fig. 2: Phylogenetic analysis of the BTB/POZ protein family from Arabidopsis.
Fig. 3: Examples for CRL3 regulation.

References

  1. 1.

    Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    CAS  PubMed  Google Scholar 

  2. 2.

    Hua, Z. H. & Vierstra, R. D. The cullin–RING ubiquitin–protein ligases. Annu. Rev. Plant Biol. 62, 299–334 (2011).

    CAS  PubMed  Google Scholar 

  3. 3.

    Vierstra, R. D. The ubiquitin–26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 10, 385–397 (2009).

    CAS  PubMed  Google Scholar 

  4. 4.

    Chen, L. & Hellmann, H. Plant E3 ligases: flexible enzymes in a sessile world. Mol. Plant 6, 1388–1404 (2013).

    CAS  PubMed  Google Scholar 

  5. 5.

    Kelley, D. R. & Estelle, M. Ubiquitin-mediated control of plant hormone signaling. Plant Physiol. 160, 47–55 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003).

    CAS  PubMed  Google Scholar 

  7. 7.

    Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003).

    CAS  PubMed  Google Scholar 

  8. 8.

    Furukawa, M., He, Y. Z. J., Borchers, C. & Xiong, Y. Targeting of protein ubiquitination by BTB–cullin 3–Roc1 ubiquitin ligases. Nat. Cell Biol. 5, 1001–1007 (2003).

    CAS  PubMed  Google Scholar 

  9. 9.

    Figueroa, P. et al. Arabidopsis has two redundant cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 17, 1180–1195 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Gingerich, D. J. et al. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin–protein ligases (E3s) in Arabidopsis. J. Biol. Chem. 280, 18810–18821 (2005).

    CAS  PubMed  Google Scholar 

  11. 11.

    Weber, H. et al. Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ–MATH protein family. Plant Physiol. 137, 83–93 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dieterle, M. et al. Molecular and functional characterization of Arabidopsis cullin 3A. Plant J. 41, 386–399 (2005).

    CAS  PubMed  Google Scholar 

  13. 13.

    Thomann, A. et al. Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. Plant J. 43, 437–448 (2005).

    CAS  PubMed  Google Scholar 

  14. 14.

    Liu, Q. E. et al. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice. Plant Cell 29, 345–359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lechner, E. et al. The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects. J. Biol. Chem. 277, 50069–50080 (2002).

    CAS  PubMed  Google Scholar 

  16. 16.

    Gray, W. M., Hellmann, H., Dharmasiri, S. & Estelle, M. Role of the Arabidopsis RING–H2 protein RBX1 in RUB modification and SCF function. Plant Cell 14, 2137–2144 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Schwechheimer, C., Serino, G. & Deng, X. W. Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function. Plant Cell 14, 2553–2563 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Stogios, P. J., Downs, G. S., Jauhal, J. J., Nandra, S. K. & Prive, G. G. Sequence and structural analysis of BTB domain proteins. Genome Biol. 6, R82 (2005).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Errington, W. J. et al. Adaptor protein self-assembly drives the control of a cullin–RING ubiquitin ligase. Structure 20, 1141–1153 (2012).

    CAS  PubMed  Google Scholar 

  20. 20.

    Zhuang, M. et al. Structures of SPOP–substrate complexes: insights into molecular architectures of BTB–Cul3 ubiquitin ligases. Mol. Cell 36, 39–50 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mosavi, L. K., Cammett, T. J., Desrosiers, D. C. & Peng, Z. Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435–1448 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    D’Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).

    PubMed  Google Scholar 

  23. 23.

    Gingerich, D. J., Hanada, K., Shiu, S. H. & Vierstra, R. D. Large-scale, lineage-specific expansion of a bric-a-brac/tramtrack/broad complex ubiquitin-ligase gene family in rice. Plant Cell 19, 2329–2348 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Chen, L., Bernhardt, A., Lee, J. & Hellmann, H. Identification of Arabidopsis MYB56 as a novel substrate for CRL3(BPM) E3 ligases. Mol. Plant 8, 242–250 (2015).

    CAS  PubMed  Google Scholar 

  25. 25.

    Skiljaica, A. et al. The protein turnover of Arabidopsis BPM1 is involved in regulation of flowering time and abiotic stress response. Plant Mol. Biol. 102, 359–372 (2020).

    CAS  PubMed  Google Scholar 

  26. 26.

    Lechner, E. et al. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper AtHB6 to modulate abscisic acid signaling. Dev. Cell 21, 1116–1128 (2011).

    CAS  PubMed  Google Scholar 

  27. 27.

    Julian, J. et al. The MATH–BTB BPM3 and BPM5 subunits of cullin3–RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proc. Natl Acad. Sci. USA 116, 15725–15734 (2019).

    CAS  PubMed  Google Scholar 

  28. 28.

    Chico, J. M. et al. CUL3(BPM) E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proc. Natl Acad. Sci. USA 117, 6205–6215 (2020).

    CAS  PubMed  Google Scholar 

  29. 29.

    Weber, H. & Hellmann, H. Arabidopsis thaliana BTB/POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family. FEBS J. 276, 6624–6635 (2009).

    CAS  PubMed  Google Scholar 

  30. 30.

    Mooney, S. et al. Characterization of Brassica rapa RAP2.4-related proteins in stress response and as CUL3-dependent E3 ligase substrates. Cells 8, 336 (2019).

    CAS  PubMed Central  Google Scholar 

  31. 31.

    Morimoto, K. et al. BPM–CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proc. Natl Acad. Sci. USA 114, E8528–E8536 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Chen, L. et al. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants. Plant Cell 25, 2253–2264 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Juranic, M. et al. Germline-specific MATH–BTB substrate adaptor MAB1 regulates spindle length and nuclei identity in maize. Plant Cell 24, 4974–4991 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Juranic, M. & Dresselhaus, T. Phylogenetic analysis of the expansion of the MATH–BTB gene family in the grasses. Plant Signal. Behav. 9, e28242 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Li, J. et al. Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Genes Genom. 40, 1–15 (2018).

    Google Scholar 

  36. 36.

    Zhao, L. et al. Phylogenetic analysis of Brassica rapa MATH-domain proteins. Curr. Genom. 14, 214–223 (2013).

    CAS  Google Scholar 

  37. 37.

    Bauer, N. et al. The MATH–BTB protein TaMAB2 accumulates in ubiquitin-containing foci and interacts with the translation initiation machinery in Arabidopsis. Front. Plant Sci. 10, 1469 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Leljak-Levanic, D., Juranic, M. & Sprunck, S. De novo zygotic transcription in wheat (Triticum aestivum L.) includes genes encoding small putative secreted peptides and a protein involved in proteasomal degradation. Plant Reprod. 26, 267–285 (2013).

    CAS  PubMed  Google Scholar 

  39. 39.

    Xia, L. et al. Rice Expression Database (RED): an integrated RNA-seq-derived gene expression database for rice. J. Genet. Genom. 44, 235–241 (2017).

    Google Scholar 

  40. 40.

    Kawahara, Y. et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (NY) 6, 4 (2013).

    Google Scholar 

  41. 41.

    Motchoulski, A. & Liscum, E. Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961–964 (1999).

    CAS  PubMed  Google Scholar 

  42. 42.

    Cheng, Y., Qin, G., Dai, X. & Zhao, Y. NPY1, a BTB–NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 18825–18829 (2007).

    CAS  PubMed  Google Scholar 

  43. 43.

    Suetsugu, N. et al. RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc. Natl Acad. Sci. USA 113, 10424–10429 (2016).

    CAS  PubMed  Google Scholar 

  44. 44.

    Wan, Y. et al. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24, 551–565 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Li, Y., Dai, X., Cheng, Y. & Zhao, Y. NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol. Plant 4, 171–179 (2011).

    CAS  PubMed  Google Scholar 

  46. 46.

    Hepworth, S. R., Zhang, Y., McKim, S., Li, X. & Haughn, G. W. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17, 1434–1448 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zhang, B. et al. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate phytochrome interacting factor 4 abundance. eLife 6, e26759 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chahtane, H. et al. LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis. New Phytol. 220, 579–592 (2018).

    CAS  PubMed  Google Scholar 

  49. 49.

    Wang, K. L., Yoshida, H., Lurin, C. & Ecker, J. R. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 945–950 (2004).

    CAS  PubMed  Google Scholar 

  50. 50.

    Christians, M. J. et al. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J. 57, 332–345 (2009).

    CAS  PubMed  Google Scholar 

  51. 51.

    Christians, M. J., Gingerich, D. J., Hua, Z., Lauer, T. D. & Vierstra, R. D. The light-response BTB1 and BTB2 proteins assemble nuclear ubiquitin ligases that modify phytochrome B and D signaling in Arabidopsis. Plant Physiol. 160, 118–134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hu, X. et al. Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization. Plant Cell 26, 4763–4781 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ni, W. et al. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344, 1160–1164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Robert, H. S., Quint, A., Brand, D., Vivian-Smith, A. & Offringa, R. BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development. Plant J. 58, 109–121 (2009).

    CAS  PubMed  Google Scholar 

  55. 55.

    Mandadi, K. K., Misra, A., Ren, S. & McKnight, T. D. BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiol. 150, 1930–1939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Zhao, Q. et al. Ubiquitination-related MdBT scaffold proteins target a bHLH transcription factor for iron homeostasis. Plant Physiol. 172, 1973–1988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Masuda, H. P. et al. ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription. EMBO J. 27, 2746–2756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kim, S. et al. ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component. Plant Physiol. 136, 3639–3648 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Genschik, P., Sumara, I. & Lechner, E. The emerging family of CULLIN3–RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 32, 2307–2320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Chae, E., Tan, Q. K., Hill, T. A. & Irish, V. F. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135, 1235–1245 (2008).

    CAS  PubMed  Google Scholar 

  61. 61.

    Thomann, A. et al. Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. PLoS Genet. 5, e1000328 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Kim, H. et al. ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis. Plant Mol. Biol. 90, 303–315 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Woo, O. G. et al. BPH1, a novel substrate receptor of CRL3, plays a repressive role in ABA signal transduction. Plant Mol. Biol. 96, 593–606 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    Wan, X. et al. AtSIBP1, a novel BTB domain-containing protein, positively regulates salt signaling in Arabidopsis thaliana. Plants (Basel) 8, 573 (2019).

    CAS  Google Scholar 

  65. 65.

    Roberts, D. et al. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3–Ring E3 ubiquitin ligase CRL3NPH3. Plant Cell 23, 3627–3640 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Pedmale, U. V. & Liscum, E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J. Biol. Chem. 282, 19992–20001 (2007).

    CAS  PubMed  Google Scholar 

  67. 67.

    Haga, K., Tsuchida-Mayama, T., Yamada, M. & Sakai, T. Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses. Plant Cell 27, 1098–1112 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Kimura, T. et al. Arabidopsis ROOT PHOTOTROPISM2 is a light-dependent dynamic modulator of phototropin1. Plant Cell 32, 2004–2019 (2020).

    CAS  PubMed  Google Scholar 

  69. 69.

    Sakai, T., Wada, T., Ishiguro, S. & Okada, K. RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225–236 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Inada, S., Ohgishi, M., Mayama, T., Okada, K. & Sakai, T. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887–896 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Withers, J. & Dong, X. Posttranslational modifications of NPR1: a single protein playing multiple roles in plant immunity and physiology. PLoS Pathog. 12, e1005707 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Mou, Z., Fan, W. & Dong, X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944 (2003).

    CAS  PubMed  Google Scholar 

  73. 73.

    Tada, Y. et al. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952–956 (2008).

    CAS  PubMed  Google Scholar 

  74. 74.

    Spoel, S. H. et al. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137, 860–872 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Zavaliev, R., Mohan, R., Chen, T. & Dong, X. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182, 1093–1108 (2020).

    CAS  PubMed  Google Scholar 

  76. 76.

    Fu, Z. Q. et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Wang, W. et al. Structural basis of salicylic acid perception by Arabidopsis NPR proteins. Nature 586, 311–316 (2020).

    CAS  PubMed  Google Scholar 

  78. 78.

    Liu, L. et al. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Commun. 7, 13099 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Chang, M. et al. PBS3 protects EDS1 from proteasome-mediated degradation in plant immunity. Mol. Plant 12, 678–688 (2019).

    CAS  PubMed  Google Scholar 

  80. 80.

    Du, L. et al. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457, 1154–1158 (2009).

    CAS  PubMed  Google Scholar 

  81. 81.

    Zhang, L., Du, L., Shen, C., Yang, Y. & Poovaiah, B. W. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+–calmodulin–AtSR1/CAMTA3 signaling. Plant J. 78, 269–281 (2014).

    CAS  PubMed  Google Scholar 

  82. 82.

    Orosa, B. et al. BTB–BACK domain protein POB1 suppresses immune cell death by targeting ubiquitin E3 ligase PUB17 for degradation. PLoS Genet 13, e1006540 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Yang, L. N. et al. Potato NPH3/RPT2-like protein StNRL1, targeted by a Phytophthora infestans RXLR effector, is a susceptibility factor. Plant Physiol. 171, 645–657 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    He, Q. et al. Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. Proc. Natl Acad. Sci. USA 115, E7834–E7843 (2018).

    CAS  PubMed  Google Scholar 

  85. 85.

    Wang, X. F. et al. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynthesis by interacting with the MdMYB1 transcription factor. Plant Physiol. 178, 890–906 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Mergner, J. & Schwechheimer, C. The NEDD8 modification pathway in plants. Front. Plant Sci. 5, 103 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Qin, N., Xu, D., Li, J. & Deng, X. W. COP9 signalosome: discovery, conservation, activity, and function. J. Integr. Plant Biol. 62, 90–103 (2020).

    CAS  PubMed  Google Scholar 

  88. 88.

    Pierce, N. W. et al. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153, 206–215 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Wu, S. et al. CAND1 controls in vivo dynamics of the cullin 1–RING ubiquitin ligase repertoire. Nat. Commun. 4, 1642 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Zemla, A. et al. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat. Commun. 4, 1641 (2013).

    PubMed  Google Scholar 

  91. 91.

    Duda, D. M. et al. Structure of a glomulin–RBX1–CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Mol. Cell 47, 371–382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Tron, A. E. et al. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7. Mol. Cell 46, 67–78 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Bagchi, R. et al. The Arabidopsis ALF4 protein is a regulator of SCF E3 ligases. EMBO J. 37, 255–268 (2018).

    CAS  PubMed  Google Scholar 

  94. 94.

    Jang, I. C., Henriques, R., Seo, H. S., Nagatani, A. & Chua, N. H. Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell 22, 2370–2383 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    CAS  PubMed  Google Scholar 

  96. 96.

    Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468, 400–405 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Yu, H. et al. Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. Nat. Plants 1, 14030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Yoon, G. M. & Kieber, J. J. 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25, 1016–1028 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Tang, X. et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129, 1165–1176 (2007).

    CAS  PubMed  Google Scholar 

  101. 101.

    Seibert, V. et al. Combinatorial diversity of fission yeast SCF ubiquitin ligases by homo- and heterooligomeric assemblies of the F-box proteins Pop1p and Pop2p. BMC Biochem. 3, 22 (2002).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    McMahon, M., Thomas, N., Itoh, K., Yamamoto, M. & Hayes, J. D. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a ‘tethering’ mechanism: a two-site interaction model for the Nrf2–Keap1 complex. J. Biol. Chem. 281, 24756–24768 (2006).

    CAS  PubMed  Google Scholar 

  103. 103.

    Hao, B., Oehlmann, S., Sowa, M. E., Harper, J. W. & Pavletich, N. P. Structure of a Fbw7-Skp1–cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26, 131–143 (2007).

    CAS  PubMed  Google Scholar 

  104. 104.

    Van Geersdaele, L. K. et al. Structural basis of high-order oligomerization of the cullin-3 adaptor SPOP. Acta Crystallogr. D Biol. Crystallogr. 69, 1677–1684 (2013).

    CAS  PubMed  Google Scholar 

  105. 105.

    Welcker, M. & Clurman, B. E. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2, 7 (2007).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Li, Y. & Hao, B. Structural basis of dimerization-dependent ubiquitination by the SCF (Fbx4) ubiquitin ligase. J. Biol. Chem. 285, 13896–13906 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Zhang, Q. et al. Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3–HIB/SPOP E3 ubiquitin ligase. Proc. Natl Acad. Sci. USA 106, 21191–21196 (2009).

    CAS  PubMed  Google Scholar 

  108. 108.

    Li, G. et al. SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer. Cancer Cell 25, 455–468 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Kwon, J. E. et al. BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J. Biol. Chem. 281, 12664–12672 (2006).

    CAS  PubMed  Google Scholar 

  110. 110.

    Hernandez-Munoz, I. et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl Acad. Sci. USA 102, 7635–7640 (2005).

    CAS  PubMed  Google Scholar 

  111. 111.

    Marzahn, M. R. et al. Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J. 35, 1254–1275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Van den Broeck, L., Gordon, M., Inze, D., Williams, C. & Sozzani, R. Gene regulatory network inference: connecting plant biology and mathematical modeling. Front. Genet. 11, 457 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Kong, L. et al. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat. Commun. 6, 8630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Wu, Q. et al. Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. Plant Cell 28, 2178–2196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Belda-Palazon, B. et al. ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. Plant J. 98, 813–825 (2019).

    CAS  PubMed  Google Scholar 

  116. 116.

    Jung, C. et al. PLANT U-BOX PROTEIN10 regulates MYC2 stability in Arabidopsis. Plant Cell 27, 2016–2031 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Qin, F. et al. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20, 1693–1707 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Morimoto, K. et al. Stabilization of Arabidopsis DREB2A is required but not sufficient for the induction of target genes under conditions of stress. PLoS ONE 8, e80457 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Dong, J. et al. Light-dependent degradation of PIF3 by SCF(EBF1/2) promotes a photomorphogenic response in Arabidopsis. Curr. Biol. 27, 2420–2430 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Biedermann, S. & Hellmann, H. WD40 and CUL4-based E3 ligases: lubricating all aspects of life. Trends Plant Sci. 16, 38–46 (2011).

    CAS  PubMed  Google Scholar 

  121. 121.

    Capron, A., Okresz, L. & Genschik, P. First glance at the plant APC/C, a highly conserved ubiquitin–protein ligase. Trends Plant Sci. 8, 83–89 (2003).

    CAS  PubMed  Google Scholar 

  122. 122.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Prigge for assistance with Fig. 2. Work in the authors’ laboratory is supported by a grant from the National Institutes of Health (GM43644).

Author information

Affiliations

Authors

Contributions

Z.B. and M.E. both contributed to the writing of the article.

Corresponding author

Correspondence to Mark Estelle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Pascal Genschik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ban, Z., Estelle, M. CUL3 E3 ligases in plant development and environmental response. Nat. Plants 7, 6–16 (2021). https://doi.org/10.1038/s41477-020-00833-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing