Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts

Abstract

Long-distance RNA movement is important for plant growth and environmental responses; however, the extent to which RNAs move between distant tissues, their relative magnitude and functional importance remain to be elucidated on a genomic scale. Using a soybean (Glycine max)–common bean (Phaseolus vulgaris) grafting system, we identified 100 shoot–root mobile microRNAs and 32 shoot–root mobile phased secondary small interfering RNAs (phasiRNAs), which were predominantly produced in shoots and transported to roots, and, in most cases, accumulated to a level similar to that observed in shoots. Many of these microRNAs or phasiRNAs enabled cleavage of their messenger RNA targets or phasiRNA precursors in roots. In contrast, most mobile-capable mRNAs were transcribed in both shoots and roots, with only small proportions transported to recipient tissues. These findings suggest that the regulatory mechanisms for small RNA movement are different from those for mRNA movement, and that the former is more strictly regulated and, probably, more functionally important than the latter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mobility and relative abundance of soybean and common bean sRNAs.
Fig. 2: Relative abundance and systemic gene regulation of mobile miRNAs.
Fig. 3: Relative abundance and systemic gene regulation of mobile phasiRNAs.
Fig. 4: Differences in directionality and relative abundance between mobile sRNAs and mRNAs.

Similar content being viewed by others

Data availability

The raw read sequences are deposited in the National Center for Biotechnology Information Sequence Read Achieve (http://www.ncbi.nlm.nih.gov/sra/) under the accession number PRJNA648759. The miRNAbase53 database (Release 22.1, 2018) was used for identifying known soybean and common bean miRNAs and their precursors.

Code availability

Custom Perl codes used for data analysis in this paper can be found at https://github.com/wang3283/sRNA-normalize-and-GO-anlaysis-input.

References

  1. Wang, J., Jiang, L. & Wu, R. Plant grafting: how genetic exchange promotes vascular reconnection. N. Phytol. 214, 56–65 (2017).

    Article  Google Scholar 

  2. Kehr, J. & Kragler, F. Long distance RNA movement. N. Phytol. 218, 29–40 (2018).

    Article  CAS  Google Scholar 

  3. Liu, L. & Chen, X. Intercellular and systemic trafficking of RNAs in plants. Nat. Plants 4, 869–878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee, J. Y. Plasmodesmata: a signaling hub at the cellular boundary. Curr. Opin. Plant Biol. 27, 133–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aloni, B., Cohen, R., Karni, L., Aktas, H. & Edelstein, M. Hormonal signaling in rootstock–scion interactions. Sci. Hortic. 127, 119–126 (2010).

    Article  CAS  Google Scholar 

  6. Zhang, S., Sun, L. & Kragler, F. The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol. 150, 378–387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thieme, C. J. et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1, 15025 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz-Medrano, R., Xoconostle-Cázares, B. & Lucas, W. J. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405–4419 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee, A. K. et al. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443–3457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, K. J., Huang, N. C., Liu, Y. S., Lu, C. A. & Yu, T. S. Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. RNA Biol. 9, 653–662 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Mahajan, A., Bhogale, S., Kang, I. H., Hannapel, D. J. & Banerjee, A. K. The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Mol. Biol. 79, 595–608 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Notaguchi, M., Wolf, S. & Lucas, W. J. Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. J. Integr. Plant Biol. 54, 760–772 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, C. et al. Rhizobial infection triggers systemic transport of endogenous RNAs between shoots and roots in soybean. Sci. China Life Sci. 63, 1213–1226 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Yoo, B. C. et al. A systemic small RNA signaling system in plants. Plant Cell 16, 1979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C. & Kehr, J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Pant, B. D. et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150, 1541–1555 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ham, B. K. & Lucas, W. J. Phloem-mobile RNAs as systemic signaling agents. Annu Rev. Plant Biol. 68, 173–195 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, S. I. et al. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 147, 732 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pant, B. D., Buhtz, A., Kehr, J. & Scheible, W. R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731–738 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buhtz, A., Pieritz, J., Springer, F. & Kehr, J. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol. 10, 64 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tsikou, D. et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362, 233 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Molnar, A. et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Lewsey, M. G. et al. Mobile small RNAs regulate genome-wide DNA methylation. Proc. Natl Acad. Sci. USA 113, E801–E810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Chitwood, D. H. et al. Pattern formation via small RNA mobility. Genes Dev. 23, 549–554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Melnyk, C. W., Schuster, C., Leyser, O. & Meyerowitz, E. M. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr. Biol. 25, 1306–1318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, Z., Liu, X., Guo, X., Wang, X. J. & Zhang, X. Arabidopsis AGO3 predominantly recruits 24-nt small RNAs to regulate epigenetic silencing. Nat. Plants 2, 16049 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl Acad. Sci. USA 101, 12753–12758 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhai, J. et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25, 2540–2553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boualem, A. et al. MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J. 54, 876–887 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, M., Meyers, B. C., Cai, C., Xu, W. & Ma, J. Evolutionary patterns and coevolutionary consequences of MIRNA genes and microRNA targets triggered by multiple mechanisms of genomic duplications in soybean. Plant Cell 27, 546–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fei, Q. et al. Biogenesis of a 22-nt microRNA in Phaseoleae species by precursor-programmed uridylation. Proc. Natl Acad. Sci. USA 115, 8037–8042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang, D., Rosemary, G. W. & Peter, M. W. Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. Plant Physiol. 159, 984–1000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xia, C., Huang, J., Lan, H. & Zhang, C. Long-distance movement of mineral deficiency-responsive mRNAs in Nicotiana benthamiana/tomato heterografts. Plants 9, 876 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  38. Sessegolo, C. et al. Transcriptome profiling of mouse samples using nanopore sequencing of cDNA and RNA molecules. Sci. Rep. 9, 14908 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Narsai, R. et al. Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. Plant Cell 19, 3418–3436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia, C. et al. Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/tomato heterograft system. Plant Physiol. 177, 745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Li, H. et al. The sequence alignment/map format and SAM tools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lin, F. et al. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genomics 15, 18 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arikit, S. et al. An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26, 4584–4601 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thody, J. et al. PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules. Nucleic Acids Res. 46, 8730–8739 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 8, 155–162 (2019).

    Article  Google Scholar 

  54. Guo, Q., Qu, X. & Jin, W. PhaseTank: genome-wide computational identification of phasiRNAs and their regulatory cascades. Bioinformatics 31, 284–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Dai, X., Zhuang, Z. & Zhao, P. X. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ren, B., Wang, X., Duan, J. & Ma, J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365, 919–922 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F. & Hellens, R. P. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3, 12 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Libault, M. et al. Identification of four soybean reference genes for gene expression normalization. Plant Genome 1, 44–54 (2008).

    Article  CAS  Google Scholar 

  59. Borges, A., Tsai, S. M. & Caldas, D. G. G. Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep. 31, 827–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Agriculture and Food Research Initiative of the USDA National Institute of Food and Agriculture (grant no. 2018-67013-27425 to J.M.), the National Natural Science Foundation of China (grant no. 31971898 to S.L.), the National Key R&D Project of China (grant no. 2016YFD0100304 to C.C. and S.L.) and the Purdue AgSEED programme to J.M.

Author information

Authors and Affiliations

Authors

Contributions

J.M., S.L. and X.W. designed the research. X.W. analysed the data. S.L., X.W., W.X., T.L., C.C., L.C. and C.B.C. performed the research. J.M. wrote the manuscript with input from X.W. and S.L.

Corresponding author

Correspondence to Jianxin Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Margaret Frank, Charles Melnyk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Relative abundances of both the mobile and immobile sRNAs in grafted shoot and root tissues.

a. Comparison of soybean-specific hcsiRNA abundances between the Pv/Gm and Gm/Gm roots. b, Comparison of common bean-specific hcsiRNA abundances between the Gm/Pv and Pv/Pv roots. c. Comparison of soybean-specific miRNA abundances between the Pv/Gm and Gm/Gm roots. d, Comparison of common bean-specific miRNA abundances between the Gm/Pv and Pv/Pv roots. e. Comparison of soybean-specific phasiRNA abundances between the Pv/Gm and Gm/Gm roots. f, Comparison of common bean-specific phasiRNA abundances between the Gm/Pv and Pv/Pv roots. Gm and Pv indicate soybean and common bean, respectively, and the specific tissue in two grafted samples is underlined below using the shoot/root notation.

Extended Data Fig. 2 Relative abundance of mobile hcsiRNAs in grafted shoot and root tissues.

a. Comparison of soybean hcsiRNA abundances between the Gm/Pv shoots and the Gm/Pv roots. b, Comparison of common bean hcsiRNA abundances between the Pv/Gm shoots and the Pv/Gm roots. c, Comparison of soybean hcsiRNA abundances between the Gm/Gm and the Gm/Pv shoots. d, Comparison of common bean hcsiRNA abundances between the Pv/Pv and Pv/Gm shoots. Gm and Pv indicate soybean and common bean, respectively, and the specific tissue in two grafted samples is underlined below using the shoot/root notation.

Extended Data Fig. 3 Relative abundances of a representative subset of mobile miRNAs in grafted shoot and root tissues validated by stem-loop qRT-PCR.

Gm and Pv indicate soybean and common bean, respectively, and two specific tissue in grafted samples is underlined below using the shoot/root notation. Values are shown as means ± standard errors (s.e.) from three biological replicates. All statistically differences between means with p < 0.01 are indicated as different letters on barplots (one-way ONOVA, Tukey HSD).

Extended Data Fig. 4 Relative abundance of mobile miRNAs and MiRNA transcripts in grafted tissues.

a. Comparison of soybean miRNA abundances between the Gm/Pv shoots and the Gm/Pv roots. b, Comparison of common bean miRNA abundances between the Pv/Gm shoots and the Pv/Gm roots. c, Comparison of soybean miRNA abundances between the Gm/Gm sand the Gm/Pv shoots. d, Comparison of common bean miRNA abundances between the Pv/Pv and the Pv/Gm shoots. e, Comparison of soybean MiRNA abundances between the Gm/Pv shoots and the Pv/Gm roots. f, Comparison of common bean MiRNA abundances between the Pv/Gm shoots and the Gm/Pv roots. Gm and Pv indicate soybean and common bean, respectively, and the specific tissue in two grafted samples is underlined below using the shoot/root notation.

Extended Data Fig. 5 Relative abundance and of mobile phasiRNAs and PHAS transcripts in grafted tissues.

a, Comparison of soybean phasiRNA abundances between the Gm/Pv shoots and the Gm/Pv roots. b, Comparison of common bean phasiRNA abundances between the Pv/Gm shoots and the Pv/Gm roots. c, Comparison of soybean phasiRNA abundances between the Gm/Gm and the Gm/Pv shoots. d, Comparison of common bean phasiRNA abundances between the Pv/Pv and the Pv/Gm shoots. e, Comparison of soybean PHAS abundances between the Gm/Pv shoots and the Pv/Gm roots. f, Comparison of common bean PHAS abundances between the Pv/Gm shoots and the Gm/Pv roots. Gm and Pv indicate soybean and common bean, respectively, and the specific tissue in two grafted samples is underlined below using the shoot/root notation.

Extended Data Fig. 6 Relative abundance of a representative subset of mobile mRNAs validated by qRT-PCR.

Gm and Pv indicate soybean and common bean, respectively, and the specific tissue in two grafted samples is underlined below using the shoot/root notation. Values are shown as means ± standard errors (s.e.) from three biological replicates. All statistically differences between means with p < 0.01 are indicated as different letters on barplots (one-way ONOVA, Tukey HSD).

Extended Data Fig. 7 Gene ontology (GO) terms enrichment of mobile mRNAs in soybean and common bean.

“S->R” indicates the shoot-to-root movement of mRNAs, whereas “R->S” indicates the root-to-shoot movement of mRNAs. GO slims, the cut-down versions of the GO ontologies containing a subset of the terms in the whole GO in plants were used for the enrichment analysis.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 3.

Reporting Summary

Supplementary Tables

Supplementary Tables 2 and 4–13.

Supplementary Data 1

Soybean and common bean mobile sRNAs detected by grafting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, X., Xu, W. et al. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. Nat. Plants 7, 50–59 (2021). https://doi.org/10.1038/s41477-020-00829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-00829-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing