Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacterial seed endophyte shapes disease resistance in rice


Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of ‘disease triangles’, which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinguishable phenotypes of rice seedlings (cv. Zhongzao 39) from different geographical origins in disease resistance.
Fig. 2: Prevalent bacterial genera in the seed endosphere of rice.
Fig. 3: Characterization of the seed endophyte conferring disease resistance.
Fig. 4: Screening and identification of the essential signalling molecule produced by Sphingomonas for conferring disease resistance.
Fig. 5: Ecological function of Sphingomonas-derived AA.
Fig. 6: Transcriptome profiling and SPR analysis of interference caused by AA on cellular functioning of Bp.

Data availability

All raw sequence data have been deposited in the Sequence Read Archive of NCBI. Bp and Sm genomes were deposited under BioProject accessions PRJNA323430 and PRJNA224116, respectively. Rice seed endosphere, bulk soil and rhizosphere microbiome data from the initial microbiome profiling were deposited under the accession PRJNA534278. Data obtained in the frame of the detailed microbiome analysis of bacterial and fungal communities were deposited under accession PRJEB39399. Transcriptome datasets were deposited under accession PRJNA534192. The 16S rRNA gene sequence of Sm was deposited under accession LC500070 in NCBI Genbank. The AA-associated pathway is available under accession CP023705.1 in the KEGG Compound Database. The reference sequence that was used for Bp genome assembly is available under RefSeq assembly accession GCF_001411805.1 in the NCBI Genbank. All other raw data for all figures and tables are available from the corresponding authors upon reasonable request. Source data are provided with this paper.


  1. Boyd, L. A., Ridout, C., O’Sullivan, D. M., Leach, J. E. & Leung, H. Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29, 233–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  4. Ham, J. H., Melanson, R. A. & Rush, M. C. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12, 329–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Naughton, L. M. et al. Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environ. Microbiol. 18, 780–790 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, X. et al. Biotoxin tropolone contamination associated with nationwide occurrence of pathogen Burkholderia plantarii in agricultural environments in China. Environ. Sci. Technol. 52, 5105–5114 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Jung, B. et al. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miyagawa, H., Ozaki, K. & Kimura, T. Pathogenicity of Pseudomonas glumae and P. plantarii to the ears and leaves of graminaceous plants. Bull. Chugoku Natl Agric. Exp. Stn 3, 31–43 (1988).

    Google Scholar 

  10. Wang, M., Hashimoto, M. & Hashidoko, Y. Carot-4-en-9,10-diol, a conidiation-inducing sesquiterpene diol produced by Trichoderma virens PS1-7 upon exposure to chemical stress from highly active iron chelators. Appl. Environ. Microbiol. 79, 1906–1914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Derksen, H., Rampitsch, C. & Daayf, F. Signaling cross-talk in plant disease resistance. Plant Sci. 207, 79–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    Article  PubMed  Google Scholar 

  17. Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).

    Article  Google Scholar 

  18. Cheng, Y. T., Zhang, L. & He, S. Y. Plant–microbe interactions facing environmental challenge. Cell Host Microbe 26, 183–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berg, G., Grube, M., Schloter, M. & Smalla, K. Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol. 5, 148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).

  22. Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100 (2018).

    Article  CAS  Google Scholar 

  24. Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).

  28. Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22 (2017).

    Article  PubMed  Google Scholar 

  29. Nelson, E. B. The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7–34 (2017).

    Article  Google Scholar 

  30. Sultan, S. E. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5, 537–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, M. et al. Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii. Sci. Rep. 6, 22596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miwa, S. et al. Identification of the three genes involved in controlling production of a phytotoxin tropolone in Burkholderia plantarii. J. Bacteriol. 198, 1604–1609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Solis, R., Bertani, I., Degrassi, G., Devescovi, G. & Venturi, V. Involvement of quorum sensing and RpoS in rice seedling blight caused by Burkholderia plantarii. FEMS Microbiol. Lett. 259, 106–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).

    Article  Google Scholar 

  35. Rybakova, D. et al. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome 5, 104 (2017).

  36. Bergna, A. et al. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes J. 2, 183–193 (2018).

    Article  Google Scholar 

  37. Wassermann, B., Cernava, T., Muller, H., Berg, C. & Berg, G. Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 7, 108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Berg, G. & Raaijmakers, J. M. Saving seed microbiomes. ISME J. 12, 1167–1170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, H., Nishiyama, M., Kunito, T. & Oyaizu, H. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736 (1998).

    Article  Google Scholar 

  40. Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rochefort, A. et al. Influence of environment and host plant genotype on the structure and diversity of the Brassica napus seed microbiota. Phytobiomes J. 3, 326–336 (2019).

    Article  Google Scholar 

  42. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

  43. Kim, H., Lee, K. K., Jeon, J., Harris, W. A. & Lee, Y. H. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome 8, 20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cordovez, V., Dini-Andreote, F., Carrion, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Thomas, F., Corre, E. & Cebron, A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. ISME J. 13, 1814–1830 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, H., Zhi, X. Y., Qiu, J., Shi, L. & Lu, Z. Characterization of a novel nicotine degradation gene cluster ndp in Sphingomonas melonis TY and its evolutionary analysis. Front. Microbiol. 8, 337 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Maeda, H. et al. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science 365, 393 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Bakker, P., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Scholthof, K. B. The disease triangle: pathogens, the environment and society. Nat. Rev. Microbiol. 5, 152–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Barillot, C. D. C., Sarde, C. O., Bert, V., Tarnaud, E. & Cochet, N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann. Microbiol. 63, 471–476 (2013).

    Article  CAS  Google Scholar 

  52. Maeda, Y. et al. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int. J. Syst. Evol. Microbiol. 56, 1031–1038 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Takeuchi, T., Sawada, H., Suzuki, F. & Matsuda, I. Specific detection of Burkolderia plantarii and B. glumae by PCR using primers selected from the 16S–23S rDNA spacer regions. Ann. Phytopath. Soc. Japan 63, 455–462 (1997).

    Article  CAS  Google Scholar 

  54. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kusstatscher, P. et al. Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome 7, 112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

  59. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Ayyagari, V. S. & Sreerama, K. Evaluation of haplotype diversity of Achatina fulica (Lissachatina) [Bowdich] from Indian sub-continent by means of 16S rDNA sequence and its phylogenetic relationships with other global populations. 3 Biotech 7, 252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lu, J. et al. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol. 167, 1100–1116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deng, X., Zhou, Y., Zheng, W., Bai, L. & Zhou, X. Dissipation dynamic and final residues of oxadiargyl in paddy fields using high-performance liquid chromatography-tandem mass spectrometry coupled with modified QuEChERS method. Int. J. Environ. Res. Public Health 15, 1680 (2018).

    Article  PubMed Central  Google Scholar 

  70. Lang, Z. et al. Isolation and characterization of a quinclorac-degrading Actinobacteria Streptomyces sp. strain AH-B and its implication on microecology in contaminated soil. Chemosphere 199, 210–217 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Sun, M., Li, H. & Jaisi, D. P. Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil–water system. Water Res. 163, 114840 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by National Key R&D Programme of China (grant nos. 2017YFE0102200, 2017YFD0202100 and 2016YFD0200804), Programme for High-Level Talents Cultivation of Zhejiang University, National Natural Science Foundation of China (grant no. 31501684), Zhejiang Provincial Key Research and Development Programme of China (grant no. 2015C02019) and Zhejiang Provincial Natural Science Foundation of China (grant no. LQ16C140001). We are also grateful to Z. Lv, B. Li and D. Xiang for providing microbial strains and plasmids as well as their valuable suggestions for molecular biology experiments; X. Chen for his support by provision of chemical reagents; Z. Ge and J. Pan for their assistance with NMR and MS analyses; and P. Shen, Z. Shang and Y. Wang for their kind help and advice during field experiments. We thank Personal Biotechnology and Magigene for their high-throughput sequencing services.

Author information

Authors and Affiliations



H.M., M.W. and T.C. designed the research. H.M., T.C., X.F., P.K., J.D., Y.W., S.C., K.Q., Y.W. and M.W performed the research. M.W., H.M., T.C., P.K., X.F., B.M., S.C., Y.H., S.W., Y.W., G.Z., K.Q. and Y.W. analysed data. M.W., H.M., T.C. and G.B. wrote the paper.

Corresponding authors

Correspondence to Tomislav Cernava or Mengcen Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Nathan Vannier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Microbiome analyses of rice seeds from different harvest years.

Bacterial (a-d) and fungal (e,f) community structures were analysed in the seed endosphere of rice. Geographical origins of the rice seeds are indicated by S2, S3, S5, and S8. Initial microbiome profiling with seeds from the growing season in 2016 (3 replicates per region; each replicate consisted of 100 mg homogenates obtained from 10 seedlings) was visualized on bacterial phylum (a) and genus (c) level. The same data processing was applied for the detailed analysis and subsequent visualization of seed microbiomes from the growing season in 2019 on bacterial phylum (b) and genus (d) level (12 replicates per region; each replicate consisted of 100 mg homogenates obtained from 10 seedlings). A complementary analysis of the fungal community shows the community on phylum (e) and genus (f) level.

Extended Data Fig. 2 Capacity of Sphingomonas melonis (Sm) to confer disease resistance to representative susceptible cultivars of rice.

For the three important rice subgroups, Oryza sativa subsp. xian, Oryza sativa subsp. geng, and hybrid rice, 15 representative susceptible cultivars (5 cultivars per subgroup) were primed with Sm (106 CFU/mL) and tested for their resistance against Bp by comparison of growth performance of culm height after 5-d growth (10 rice seedlings per cultivar). Values are means ± SD (shown as error bars; n = 10 seedlings). P value, Student’s t-test (two-tailed), shown on the top of the paired columns.

Extended Data Fig. 3 Modelling of potential interactions of RpoS with different anthranilic acid (AA) isomers.

The interaction between anthranilic acid (a), meta-anthranilic acid (b) and para-anthranilic acid (c), respectively with RpoS of B. plantarii were analysed with molecular docking experiments. Illustrations of the interaction between AA and RpoS by molecular docking (left panel), and putative binding sites and modes of AA stabilization by amino acid residues of RpoS (right panel) are shown.

Extended Data Fig. 4 Microbiome profiling of bulk soil, seed endosphere, and rhizosphere in 2016.

The bulk soil (a), seed endosphere (b), and the rhizosphere (c) during the growing season in 2016 were collected in the investigated rice paddies. S2, S3, S5, and S8 indicates the geographical origins of the samples. The taxonomy was assessed at bacterial genus level whenever possible; when taxonomy was only assignable at bacterial class level, ‘c’ was added in front of the Latin name.

Extended Data Fig. 5 Chemical structures of the herbicides that were detected in the rice paddies located at the four investigated regions in Zhejiang Province.

The labels S2, S3, S5, and S8 indicate the geographical locations of the paddies where the herbicides were detected. The locations correspond to the sampling locations where the rice seeds were collected in the growing seasons 2016 and 2019.

Supplementary information

Supplementary Information

Supplementary methods, Tables 1–8, Figs. 1–30 and references.

Reporting Summary

Supplementary Data 1

Analysis of differential occurrence of bacterial ASVs in the seed endosphere of rice.

Supplementary Data 2

Comparison of different Sphingomonas species and strains on genome level.

Supplementary Data 3

ASV tables from all microbiome datasets.

Supplementary Data 4

List of significantly upregulated genes following AA treatment.

Supplementary Data 5

List of significantly downregulated genes following AA treatment.

Supplementary Data 6

Enriched KEGG pathways with significantly downregulated genes.

Source data

Source Data Fig. 1f

Unprocessed gels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, H., Fan, X., Wang, Y. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing