Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The environmental impacts of palm oil in context

Abstract

Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils and, in particular, palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for ~40% of the current global annual demand for vegetable oil as food, animal feed and fuel (210 Mt), but planted oil palm covers less than 5–5.5% of the total global oil crop area (approximately 425 Mha) due to oil palm’s relatively high yields. Recent oil palm expansion in forested regions of Borneo, Sumatra and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm’s role in deforestation. Oil palm expansion’s direct contribution to regional tropical deforestation varies widely, ranging from an estimated 3% in West Africa to 50% in Malaysian Borneo. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 2050. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation and livelihoods. Our Review highlights that although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. Greater research attention needs to be given to investigating the impacts of palm oil production compared to alternatives for the trade-offs to be assessed at a global scale.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Main vegetable oil crops.
Fig. 2: Maps of industrial and smallholder-scale oil palm from analysis of satellite imagery until the second half of 2019 (ref. 14), and examples of species it affects negatively.
Fig. 3: Oil palm’s estimated role in deforestation aggregated across studies, years and regions.
Fig. 4: Species groups with more than eight threatened species with the terms ‘palm oil’ or ‘oil palm’ in the threats texts of the IUCN Red List of Threatened Species Assessments26.

References

  1. Byerlee, D., Falcon, W. P. & Naylor, R. L. The Tropical Oil Crop Revolution: Food, Feed, Fuel, and Forests (Oxford Univ. Press, 2017).

  2. FAOSTAT. Food and agriculture data. Food and Agriculture Organization of the United Nations http://www.fao.org/faostat/en/#home (2019).

  3. Ramankutty, N. et al. Trends in global agricultural land use: implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018).

    CAS  PubMed  Article  Google Scholar 

  4. Hickman, M. The guilty secrets of palm oil: Are you unwittingly contributing to the devastation of the rain forests? Independent https://www.independent.co.uk/environment/the-guilty-secrets-of-palm-oil-are-you-unwittingly-contributing-to-the-devastation-of-the-rain-1676218.html (2009).

  5. Meijaard, E. et al. Oil Palm and Biodiversity – A Situation Analysis (IUCN Oil Palm Task Force, 2018).

  6. Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).

    Article  Google Scholar 

  7. Feintrenie, L., Gazull, L., Goulaouic, R. & Miaro III, L. Spatialized production models for sustainable palm oil in Central Africa: choices and potentials. In Scaling Up Responsible Land Governance. Annual World Bank Conference on Land and Poverty 14–18 (World Bank Group, 2016).

  8. Sheil, D. et al. The Impacts and Opportunities of Oil Palm in Southeast Asia. What Do We Know and What Do We Need to Know? (Center for International Forestry Research (CIFOR), 2009).

  9. Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. 92, 1539–1569 (2017).

    PubMed  Article  Google Scholar 

  10. Li, T. M. Evidence-Based Options For Advancing Social Equity In Indonesian Palm Oil: Implications For Research, Policy And Advocacy (Center for International Forestry Research (CIFOR), 2018).

  11. Santika, T. et al. Does oil palm agriculture help alleviate poverty? A multidimensional counterfactual assessment of oil palm development in Indonesia. World Dev. 120, 105–117 (2019).

    Article  Google Scholar 

  12. Meijaard, E. & Sheil, D. The moral minefield of ethical oil palm and sustainable development. Front. For. Glob. Change 2, 22 (2019).

    Article  Google Scholar 

  13. Krishna, V., Euler, M., Siregar, H. & Qaim, M. Differential livelihood impacts of oil palm expansion in Indonesia. Agric. Econ. 48, 639–653 (2017).

    Article  Google Scholar 

  14. Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Preprint at https://essd.copernicus.org/preprints/essd-2020-159/ (2020).

  15. RSPO Smallholders Task Force. RSPO Smallholders. RSPO https://rspo.org/smallholders#definition (2012).

  16. Gaveau, D. L. A. et al. Four decades of forest persistence, loss and logging on Borneo. PLoS ONE 9, e101654 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  19. Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Furumo, P. R. & Aide, T. M. Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environ. Res. Lett. 12, 024008 (2017).

    Article  Google Scholar 

  21. Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).

    Article  Google Scholar 

  22. Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).

    Article  Google Scholar 

  23. Gutiérrez-Vélez, V. H. et al. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 6, 044029 (2011).

    Article  Google Scholar 

  24. Lee, J. S. H. et al. Environmental impacts of large-scale oil palm enterprises exceed that of smallholdings in Indonesia. Conserv. Lett. 7, 25–33 (2014).

    Article  Google Scholar 

  25. Schoneveld, G. C., Ekowati, D., Andrianto, A. & van der Haar, S. Modeling peat- and forestland conversion by oil palm smallholders in Indonesian Borneo. Environ. Res. Lett. 14, 014006 (2019).

    Article  Google Scholar 

  26. The IUCN Red List of Threatened Species Version 2019-2 (IUCN, 2019); https://www.iucnredlist.org

  27. Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).

    CAS  PubMed  Article  Google Scholar 

  28. Foster, W. A. et al. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Phil. Trans. R. Soc. B 366, 3277–3291 (2011).

    PubMed  Article  Google Scholar 

  29. Savilaakso, S. et al. Systematic review of effects on biodiversity from oil palm production. Environ. E. 3, 4 (2014).

    Article  Google Scholar 

  30. Germer, J. U. Spatial undergrowth species composition in oil palm (Elaeis guineensis Jacq.) in West Sumatra, Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim (2003).

  31. Sato, T., Itoh, H., Kudo, G., Kheong, Y. S. & Furukawa, A. Species composition and structure of epiphytic fern community on oil palm trunks in Malay Archipelago. Tropics 6, 139–148 (1996).

    Article  Google Scholar 

  32. Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).

    PubMed  Article  Google Scholar 

  33. Wearn, O. R., Carbone, C., Rowcliffe, J. M., Bernard, H. & Ewers, R. M. Grain-dependent responses of mammalian diversity to land use and the implications for conservation set-aside. Ecol. Appl. 26, 1409–1420 (2016).

    PubMed  Article  Google Scholar 

  34. Pardo, L. E. et al. Land management strategies can increase oil palm plantation use by some terrestrial mammals in Colombia. Sci. Rep. 9, 7812 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    CAS  PubMed  Article  Google Scholar 

  36. Almeida, S. M. et al. The effects of oil palm plantations on the functional diversity of Amazonian birds. J. Trop. Ecol. 32, 510–525 (2016).

    Article  Google Scholar 

  37. Edwards, D. P. et al. Selective-logging and oil palm: multitaxon impacts, biodiversity indicators, and trade-offs for conservation planning. Ecol. Applic. 24, 2029–2049 (2014).

    Article  Google Scholar 

  38. Nájera, A. & Simonetti, J. A. Can oil palm plantations become bird friendly? Agrofor. Syst. 80, 203–209 (2010).

    Article  Google Scholar 

  39. Akani, G. C., Ebere, N., Luiselli, L. & Eniang, E. A. Community structure and ecology of snakes in fields of oil palm trees (Elaeis guineensis) in the Niger Delta, southern Nigeria. Afr. J. Ecol. 46, 500–506 (2008).

    Article  Google Scholar 

  40. Humle, T. & Matsuzawa, T. Oil palm use by adjacent communities of chimpanzees at Bossou and Nimba Mountains, West Africa. Int. J. Primatol. 25, 551–581 (2004).

    Article  Google Scholar 

  41. Ancrenaz, M. et al. Of pongo, palms, and perceptions – A multidisciplinary assessment of orangutans in an oil palm context. Oryx 49, 465–472 (2015).

    Article  Google Scholar 

  42. Mitchell, S. L. et al. Riparian reserves help protect forest bird communities in oil palm dominated landscapes. J. Appl. Ecol. 55, 2744–2755 (2018).

    Article  Google Scholar 

  43. Deere, N. J. et al. Implications of zero-deforestation commitments: forest quality and hunting pressure limit mammal persistence in fragmented tropical landscapes. Conserv. Lett. 13, e12701 (2020).

    Article  Google Scholar 

  44. Knowlton, J. L. et al. Oil palm plantations affect movement behavior of a key member of mixed-species flocks of forest birds in Amazonia, Brazil. Trop. Conserv. Sci. 10, 1940082917692800 (2017).

    Article  Google Scholar 

  45. Tohiran, K. A. et al. Targeted cattle grazing as an alternative to herbicides for controlling weeds in bird-friendly oil palm plantations. Agron. Sust. Dev. 37, 62 (2017).

    Article  Google Scholar 

  46. Slade, E. M. et al. Can cattle grazing in mature oil palm increase biodiversity and ecosystem service provision? Planter 90, 655–665 (2014).

    Google Scholar 

  47. Global Invasive Species Database (GISD). Species Profile Elaeis guineensis (IUCN, accessed 27 February 2018); http://www.iucngisd.org/gisd/species

  48. Wan, H. The introduction of barn owl (Tyto alba) to Sabah for rat control in oil palm plantations. Planter 76, 215–222 (2000).

    Google Scholar 

  49. Bessou, C. et al. Sustainable Palm Oil Production Project Synthesis: Understanding And Anticipating Global Challenges (Center for International Forestry Research (CIFOR), 2017).

  50. Puan, C. L., Goldizen, A. W., Zakaria, M., Hafidzi, M. N. & Baxter, G. S. Relationships among rat numbers, abundance of oil palm fruit and damage levels to fruit in an oil palm plantation. Intergr. Zool. 6, 130–139 (2011).

    Article  Google Scholar 

  51. Holzner, A. et al. Macaques can contribute to greener practices in oil palm plantations when used as biological pest control. Curr. Biol. 29, R1066–R1067 (2019).

    CAS  PubMed  Article  Google Scholar 

  52. Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. 8, 2231 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Mayfield, M. M. The importance of nearby forest to known and potential pollinators of oil palm (Elaeis guineensis Jacq.; Areceaceae) in southern Costa Rica. Econ. Bot. 59, 190 (2005).

    Article  Google Scholar 

  54. Woodham, C. R. et al. Effects of replanting and retention of mature oil palm riparian buffers on ecosystem functioning in oil palm plantations. Front. For. Glob. Change 2, 29 (2019).

    Article  Google Scholar 

  55. Azhar, B. et al. The influence of agricultural system, stand structural complexity and landscape context on foraging birds in oil palm landscapes. Ibis 155, 297–312 (2013).

    Article  Google Scholar 

  56. Wijedasa, L. S. et al. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob. Change Biol. 23, 977–982 (2016).

    Article  Google Scholar 

  57. Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

    CAS  PubMed  Article  Google Scholar 

  59. Reijnders, L. & Huijbregts, M. A. J. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 16, 477–482 (2006).

    Article  Google Scholar 

  60. Murdiyarso, D., Van Noordwijk, M., Wasrin, U. R., Tomich, T. P. & Gillison, A. N. Environmental benefits and sustainable land-use options in the Jambi transect, Sumatra. J. Veg. Sci. 13, 429–438 (2002).

    Article  Google Scholar 

  61. Harsono, S. S., Grundmann, P. & Soebronto, S. Anaerobic treatment of palm oil mill effluents: potential contribution to net energy yield and reduction of greenhouse gas emissions from biodiesel production. J. Clean. Prod. 64, 619–627 (2014).

    CAS  Article  Google Scholar 

  62. Hewitt, C. N. et al. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc. Natl Acad. Sci. USA 106, 18447 (2009).

    CAS  PubMed  Article  Google Scholar 

  63. Misztal, P. K. et al. Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmos. Chem. Phys. 11, 8995–9017 (2011).

    CAS  Article  Google Scholar 

  64. Guenther, A. et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

    CAS  Article  Google Scholar 

  65. Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Global Environ. Chang. 43, 51–61 (2017).

    Article  Google Scholar 

  66. McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).

    Article  Google Scholar 

  67. Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency in the community land model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. J. Adv. Model. Earth Sy. 11, 732–751 (2019).

    Article  Google Scholar 

  68. Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 37074 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Nichol, J. Bioclimatic impacts of the 1994 smoke haze event in Southeast Asia. Atmos. Environ. 31, 1209–1219 (1997).

    CAS  Article  Google Scholar 

  70. Carlson, K. M. et al. Consistent results in stream hydrology across multiple watersheds: a reply to Chew and Goh. J. Geophys. Res. Biogeosci. 120, 812–817 (2015).

    Article  Google Scholar 

  71. Luke, S. H. et al. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrol. 10, e1827 (2017).

    Article  Google Scholar 

  72. Mayer, P. M., Reynolds, S. K., McCutchen, M. D. & Canfield, T. J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 36, 1172–1180 (2007).

    CAS  PubMed  Article  Google Scholar 

  73. Chellaiah, D. & Yule, C. M. Effect of riparian management on stream morphometry and water quality in oil palm plantations in Borneo. Limnologica 69, 72–80 (2018).

    CAS  Article  Google Scholar 

  74. Sulai, P. et al. Effects of water quality in oil palm production landscapes on tropical waterbirds in Peninsular Malaysia. Ecol. Res. 30, 941–949 (2015).

    Article  Google Scholar 

  75. Anda, M., Siswanto, A. B. & Subandiono, R. E. Properties of organic and acid sulfate soils and water of a ‘reclaimed’ tidal backswamp in Central Kalimantan, Indonesia. Geoderma 149, 54–65 (2009).

    CAS  Article  Google Scholar 

  76. Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).

    Article  Google Scholar 

  77. Wich, SergeA. et al. Will oil palm’s homecoming spell doom for Africa’s great apes? Curr. Biol. 24, 1659–1663 (2014).

    CAS  PubMed  Article  Google Scholar 

  78. Sayer, J., Ghazoul, J., Nelson, P. & Boedhihartono, A. K. Oil palm expansion transforms tropical landscapes and livelihoods. Glob. Food Secur. 1, 114–119 (2012).

    Article  Google Scholar 

  79. RSPO and HCSA collaborate to implement no deforestation in high forest cover landscapes. RSPO https://rspo.org/news-and-events/news/rspo-and-hcsa-collaborate-to-implement-no-deforestation-in-high-forest-cover-landscapes (2018).

  80. Law, E. A. et al. Mixed policies give more options in multifunctional tropical forest landscapes. J. Appl. Ecol. 54, 51–60 (2017).

    Article  Google Scholar 

  81. Budiadi et al. Oil palm agroforestry: an alternative to enhance farmers’ livelihood resilience. In The 1st International Conference on Natural Resources and Environmental Conservation (ICNREC) (IOP Publishing Ltd., 2019).

  82. Valin, H. et al. The Land Use Change Impact Of Biofuels Consumed In The EU. Quantification Of Area And Greenhouse Gas Impacts (ECOFYS Netherlands B. V., 2015).

  83. Thamsiriroj, T. & Murphy, J. D. Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? Appl. Energ. 86, 595–604 (2009).

    CAS  Article  Google Scholar 

  84. Rosoman, G., Sheun, S. S., Opal, C., Anderson, P. & Trapshah, R. The HCS Approach Toolkit (HCS Approach Steering Group, 2017).

  85. Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).

    CAS  PubMed  Article  Google Scholar 

  86. Furumo, P. R., Rueda, X., Rodríguez, J. S. & Parés Ramos, I. K. Field evidence for positive certification outcomes on oil palm smallholder management practices in Colombia. J. Clean. Prod. 245, 118891 (2020).

    Article  Google Scholar 

  87. Donofrio, S., Rothrock, P. & Leonard, J. Tracking Corporate Commitments to Deforestation-free Supply Chains, 2017 (Forest Trends, 2017).

  88. Palm oil: ESG policy transparency assessments. SPOTT https://www.spott.org/palm-oil/ (2018).

  89. Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Global Environ. Chang. 62, 102055 (2020).

    Article  Google Scholar 

  90. Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377 (2015).

    CAS  PubMed  Article  Google Scholar 

  91. OECD‑FAO Agricultural Outlook 2018‑2027 (OECD and FAO, 2017).

  92. Johnston, M., Foley, J. A., Holloway, T., Kucharik, C. & Monfreda, C. Resetting global expectations from agricultural biofuels. Environ. Res. Lett. 4, 014004 (2009).

    Article  CAS  Google Scholar 

  93. Parsons, S., Raikova, S. & Chuck, C. J. The viability and desirability of replacing palm oil. Nat. Sustain. 3, 412–418 (2020).

    Article  Google Scholar 

  94. Qaim, M., Sibhatu, K. T., Siregar, H. & Grass, I. Environmental, economic, and social consequences of the oil palm boom. Ann. Rev. Res. Econ. 12, 321–344 (2020).

    Article  Google Scholar 

  95. VanBeek, K. R., Brawn, J. D. & Ward, M. P. Does no-till soybean farming provide any benefits for birds? Agricult. Ecosyst. Env. 185, 59–64 (2014).

    Article  Google Scholar 

  96. Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202 (2019).

    CAS  PubMed  Article  Google Scholar 

  97. Strona, G. et al. Small room for compromise between oil palm cultivation and primate conservation in Africa. Proc. Natl Acad. Sci. USA 115, 8811 (2018).

    CAS  PubMed  Article  Google Scholar 

  98. Ajjawi, I. et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35, 647 (2017).

    CAS  PubMed  Article  Google Scholar 

  99. De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Env. 175, 1–7 (2013).

    Article  Google Scholar 

  100. Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    CAS  PubMed  Article  Google Scholar 

  101. Payán, E. & Boron, V. The future of wild mammals in oil palm landscapes in the Neotropics. Front. For. Glob. Change 2, 61 (2019).

    Article  Google Scholar 

  102. Maddox, T., Priatna, D., Gemita, E. & Salampessy, A. The Conservation Of Tigers And Other Wildlife In Oil Palm Plantations Jambi Province, Sumatra, Indonesia ZSL Conservation Report No. 7 (The Zoological Society of London, 2007).

  103. Ancrenaz, M. et al. Pongo pygmaeus; erratum The IUCN Red List of Threatened Species 2016: e.T17975A123809220 (IUCN, 2016); https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T17975A17966347.en

  104. Pangau-Adam, M., Mühlenberg, M. & Waltert, M. Rainforest disturbance affects population density of the northern cassowary Casuarius unappendiculatus in Papua, Indonesia. Oryx 49, 735–742 (2014).

    Article  Google Scholar 

  105. Alamgir, M. et al. Infrastructure expansion challenges sustainable development in Papua New Guinea. PLoS ONE 14, e0219408 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Katiyar, R. et al. Microalgae: an emerging source of energy based bio-products and a solution for environmental issues. Renew. Sustain. Energy Rev. 72, 1083–1093 (2017).

    CAS  Article  Google Scholar 

  107. Nomanbhay, S., Salman, B., Hussain, R. & Ong, M. Y. Microwave pyrolysis of lignocellulosic biomass––a contribution to power Africa. Energy Sustain. Soc. 7, 23 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The development of this situation analysis was supported by the IUCN project ‘Global Commons: Solutions for a Crowded Planet’, funded by the Global Environment Facility. D.J.B. received funding from the UK Research and Innovation’s Global Challenges Research Fund under the Trade, Development and the Environment Hub project (project number ES/S008160/1). M.P. was supported by the CNPq research productivity fellowships (no. 308403/2017‐7). J.G.-U. was funded by SNSF R4D-project Oil Palm Adaptive Landscapes.

Author information

Authors and Affiliations

Authors

Contributions

E.M., D.S. and T.M.B. conceptualized this study and developed the initial manuscript. K.C., J.G.-U., D.G., J.S.H.L., D.J.B., S.A.W., M.A., S.W., L.P.K., J.F.A., Z.S. and A.D. assisted in the acquisition, analysis and interpretation of the data, and further writing. E.S., T.S., J.F.A., H.P., C.S., D.M., P.F., N.M., R.H., M.P. and M.S. provided substantial input into the text revisions, and N.Z., J.F.A., D.J.B., K.C., D.G., A.D. and J.F.A. designed the graphics.

Corresponding author

Correspondence to Erik Meijaard.

Ethics declarations

Competing interests

None of co-authors in this study, except D.J.B., M.P. and J.G.-U., received funding for conducting this Review, although the information was partly based on a study funded by the Global Environment Facility. E.M., T.M.B., D.G., M.A., S.W., L.P.K., J.G.-U., K.C., N.M. and D.S. are members of and have received funding from the IUCN Oil Palm Task Force, a group tasked by the IUCN members to investigate the sustainability of palm oil. T.M.B., D.J.B., M.A., C.S. and N.M. work for conservation organizations and E.M., M.A. and M.P. have done work paid by palm oil companies or the Roundtable on Sustainable Palm Oil.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials, Figs. 1 and 2, and Tables 1–3.

Supplementary Table

List of species on the IUCN Red List of Threatened Species for which oil crops are one of the threats to the survival (1 = impacted by the crop; 0 = not impacted by the crop).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meijaard, E., Brooks, T.M., Carlson, K.M. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020). https://doi.org/10.1038/s41477-020-00813-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-00813-w

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing