Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ethylene-independent functions of the ethylene precursor ACC in Marchantia polymorpha

Abstract

The plant hormone ethylene has many roles in growth and development1. In seed plants, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is converted into ethylene by ACC oxidase (ACO), and treatment with ACC induces ethylene responses2. However, non-seed plants lack ACO homologues3,4,5,6,7,8, which led us to examine the relationship between ACC and ethylene in the liverwort Marchantia polymorpha. Here, we demonstrate that ACC and ethylene can induce divergent growth responses in Marchantia. Ethylene increases plant and gemma size, induces more gemma cups and promotes gemmae dormancy. As predicted, Mpctr1-knockout mutants display constitutive ethylene responses, whereas Mpein3-knockout mutants exhibit ethylene insensitivity. Compared with the wild type, Mpctr1 gemmae have more and larger epidermal cells, whereas Mpein3 gemmae have fewer and smaller epidermal cells, suggesting that ethylene promotes cell division and growth in developing gemmae. By contrast, ACC treatment inhibits gemma growth and development by suppressing cell division, even in the Mpein3-knockout alleles. Knockout mutants of one or both ACC SYNTHASE (ACS) gene homologues produce negligible levels of ACC, have more and larger gemma cups, and have more-expanded thallus branches. Mpacs2 and Mpacs1 Mpacs2 gemmae also display a high frequency of abnormal apical notches (meristems) that are not observed in ethylene mutants. These findings reveal that ethylene and ACC have distinct functions, and suggest that ACC is a signalling molecule in Marchantia. ACC may be an evolutionarily conserved signal that predates its efficient conversion to ethylene in higher plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ethylene treatment enhances thallus growth and gemma size, induces gemma cups and reduces gemma non-dormancy in WT Marchantia.
Fig. 2: Mpctr1- and Mpein3-knockout mutants display constitutive ethylene responses and ethylene insensitivity, respectively.
Fig. 3: ACC treatment inhibits plant growth and reduces gemma epidermal cell number.
Fig. 4: Single and double Mpacs1- and Mpacs2-knockout mutants have reduced ACC levels, abnormal thallus shape, increased gemma non-dormancy and apical notch defects.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request. Publicly available RNA-seq libraries analysed in this study are listed in Supplementary Data 2. The nucleotide and/or protein sequences analysed in this study are publicly available from NCBI SRA (https://www.ncbi.nlm.nih.gov/sra), NCBI Landmark Database (https://blast.ncbi.nlm.nih.gov/smartblast/smartBlast.cgi?CMD=Web&PAGE_TYPE=BlastDocs#searchSets), Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html), GenBank (https://www.ncbi.nlm.nih.gov/genbank/), MarpolBase (https://marchantia.info/), Congenie (http://congenie.org/) and refs. 10,46,47,48,49,50,51,52.

References

  1. Abeles, F. B. M., Morgan, P. W. & Saltveit, M. E. Ethylene in Plant Biology (Academic, 1992).

  2. Yang, S. F. & Hoffman, N. E. Ethylene biosynthesis and its regulation in higher-plants. Ann. Rev. Plant Physiol. 35, 155–189 (1984).

    CAS  Google Scholar 

  3. Li, F.-W. et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 4, 460–472 (2018).

    CAS  Google Scholar 

  4. Nishiyama, T. et al. The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174, 448–464 (2018).

    CAS  Google Scholar 

  5. Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).

    CAS  Google Scholar 

  6. Banks, J. A. et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960–963 (2011).

    CAS  Google Scholar 

  7. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    CAS  Google Scholar 

  8. Kawai, Y., Ono, E. & Mizutani, M. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J. 78, 328–343 (2014).

    CAS  Google Scholar 

  9. Ju, C. & Chang, C. Mechanistic insights in ethylene perception and signal transduction. Plant Physiol. 169, 85–95 (2015).

    CAS  Google Scholar 

  10. Ju, C. et al. Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat. Plants 1, 14004 (2015).

    CAS  Google Scholar 

  11. Osborne, D. J., Walters, J., Milborrow, B. V., Norville, A. & Stange, L. M. Evidence for a non-ACC ethylene biosynthesis pathway in lower plants. Phytochemistry 42, 51–60 (1996).

    CAS  Google Scholar 

  12. Chernys, J. & Kende, H. Ethylene biosynthesis in Regnellidium diphyllum and Marsilea quadrifolia. Planta 200, 113–118 (1996).

    CAS  Google Scholar 

  13. Ishizaki, K., Nishihama, R., Yamato, K. T. & Kohchi, T. Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol. 57, 262–279 (2016).

    CAS  Google Scholar 

  14. Montgomery, S. A. et al. Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr. Biol. 30, 573–588 (2020).

    CAS  Google Scholar 

  15. Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A. & Ecker, J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72, 427–441 (1993).

    CAS  Google Scholar 

  16. Chao, Q. et al. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89, 1133–1144 (1997).

    CAS  Google Scholar 

  17. Pirrung, M. C., Cao, J. & Chen, J. Ethylene biosynthesis: processing of a substrate analog supports a radical mechanism for the ethylene-forming enzyme. Chem. Biol. 5, 49–57 (1998).

    CAS  Google Scholar 

  18. Pirrung, M. C. Ethylene biosynthesis from 1-aminocyclopropanecarboxylic acid. Acc. Chem. Res. 32, 711–718 (1999).

    CAS  Google Scholar 

  19. Stange, L. M. D. & Osborne, D. J. In Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants (eds Clijsters, H. et al.) 341–348 (1989).

  20. Kato, H. et al. The roles of the sole activator-type auxin response factor in pattern formation of Marchantia polymorpha. Plant Cell Physiol. 58, 1642–1651 (2017).

    CAS  Google Scholar 

  21. Eklund, D. M. et al. Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell 27, 1650–1669 (2015).

    CAS  Google Scholar 

  22. Eklund, D. M. et al. An evolutionarily conserved abscisic acid signaling pathway regulates dormancy in the liverwort Marchantia polymorpha. Curr. Biol. 28, 3691–3699 (2018).

    CAS  Google Scholar 

  23. Muday, G. K., Rahman, A. & Binder, B. M. Auxin and ethylene: collaborators or competitors? Trends Plant Sci. 17, 181–195 (2012).

    CAS  Google Scholar 

  24. Uji, T., Endo, H. & Mizuta, H. Sexual reproduction via a 1-aminocyclopropane-1-carboxylic acid-dependent pathway through redox modulation in the marine red alga Pyropia yezoensis (Rhodophyta). Front. Plant Sci. 11, 60 (2020).

    Google Scholar 

  25. Mou, W. et al. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nat. Commun. 11, 4082 (2020).

    CAS  Google Scholar 

  26. Tsang, D. L., Edmond, C., Harrington, J. L. & Nuhse, T. S. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol. 156, 596–604 (2011).

    CAS  Google Scholar 

  27. Xu, S. L., Rahman, A., Baskin, T. I. & Kieber, J. J. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20, 3065–3079 (2008).

    CAS  Google Scholar 

  28. Vanderstraeten, L., Depaepe, T., Bertrand, S. & Van Der Straeten, D. The ethylene precursor ACC affects early vegetative development independently of ethylene signaling. Front. Plant Sci. 10, 1591 (2019).

    Google Scholar 

  29. Yin, J. et al. Aminocyclopropane-1-carboxylic acid is a key regulator of guard mother cell terminal division in Arabidopsis thaliana. J. Exp. Bot. 70, 897–907 (2019).

    CAS  Google Scholar 

  30. Monte, I. et al. An ancient COI-independent function for reactive electrophilic oxylipins in thermotolerance. Curr. Biol. 30, 962–971 (2020).

    CAS  Google Scholar 

  31. Fukuda, H., Ogawa, T. & Tanase, S. Ethylene production by micro-organisms. Adv. Microb. Physiol. 35, 275–306 (1993).

    CAS  Google Scholar 

  32. John, P. Ethylene biosynthesis: the role of 1-aminocyclopropane-1-carboxylate (ACC) oxidase, and its possible evolutionary origin. Physiol. Plant 100, 583–592 (1997).

    CAS  Google Scholar 

  33. Allen, C. J. et al. Cyanobacteria respond to low levels of ethylene. Front. Plant. Sci. 10, 950 (2019).

    Google Scholar 

  34. Yordanova et al. Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii. Cell Biol. Int. 34, 301–308 (2010).

    CAS  Google Scholar 

  35. Vo, T.-T. et al. Effect of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid on different growth stages of Haematococcus pluvialis. Bioresour. Technol. 220, 85–93 (2016).

    CAS  Google Scholar 

  36. Flores-Sandoval, E., Eklund, D. M. & Bowman, J. L. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet. 11, e1005207 (2015).

    Google Scholar 

  37. NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 46, D8–D13 (2018).

    Google Scholar 

  38. Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).

    CAS  Google Scholar 

  39. Price, D. C. et al. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335, 843–847 (2012).

    CAS  Google Scholar 

  40. Schonknecht, G. et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339, 1207–1210 (2013).

    Google Scholar 

  41. Delwiche, C. F. & Cooper, E. D. The evolutionary origin of a terrestrial flora. Curr. Biol. 25, R899–R910 (2015).

    CAS  Google Scholar 

  42. Kakuta, Y. et al. 1-Aminocyclopropane-1-carboxylate synthase of Penicillium citrinum: primary structure and expression in Escherichia coli and Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 65, 1511–1518 (2001).

    CAS  Google Scholar 

  43. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  Google Scholar 

  44. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Google Scholar 

  45. Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).

    CAS  Google Scholar 

  46. Vanneste, K., Sterck, L., Myburg, A. A., Van De Peer, Y. & Mizrachi, E. Horsetails are ancient polyploids: evidence from Equisetum giganteum. Plant Cell 27, 1567–1578 (2015).

    CAS  Google Scholar 

  47. Zhang, J. et al. The hornwort genome and early land plant evolution. Nat. Plants 6, 107–118 (2020).

    CAS  Google Scholar 

  48. Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859–E4868 (2014).

    CAS  Google Scholar 

  49. Hori, K. et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5, 3978 (2014).

    CAS  Google Scholar 

  50. Cheng, S. et al. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179, 1057–1067 (2019).

    CAS  Google Scholar 

  51. Wang, S. et al. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat. Plants 6, 95–106 (2019).

    Google Scholar 

  52. Cooper, E. & Delwiche, C. Green algal transcriptomes for phylogenetics and comparative genomics. Figshare https://doi.org/10.6084/m9.figshare.1604778 (2016).

  53. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    CAS  Google Scholar 

  54. Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Evolution—Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001).

    CAS  Google Scholar 

  55. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005).

    CAS  Google Scholar 

  56. Sugano, S. S. et al. Efficient CRISPR-Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS ONE 13, e0205117 (2018).

    Google Scholar 

  57. Ishizaki, K. et al. Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS ONE 10, e0138876 (2015).

    Google Scholar 

  58. Bowman, J. L. et al. The naming of names: guidelines for gene nomenclature in Marchantia. Plant Cell Physiol. 57, 257–261 (2016).

    CAS  Google Scholar 

  59. Ishizaki, K., Chiyoda, S., Yamato, K. T. & Kohchi, T. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49, 1084–1091 (2008).

    CAS  Google Scholar 

  60. Flores-Sandoval, E., Romani, F. & Bowman, J. L. Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front. Plant Sci. 9, 1345 (2018).

    Google Scholar 

  61. Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids. Res. 46, W537–W544 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Y.-T. Kao for help with maintaining plants; M. Tucker for 1-MCP; and H. Sze for use of her microscope. We acknowledge the Imaging Core Facility in the department of Cell Biology and Molecular Genetics at the University of Maryland, College Park, for the Leica SP5X Laser Scanning Confocal microscope. This work was supported by a NSF grant (no. MCB-1714993, to C.C.), the Australian Research Council (DP170100049, to J.L.B.) and a China Scholarship Council graduate student fellowship (to D.L.). U.A. was supported in part by a grant to the University of Maryland from the Howard Hughes Medical Institute through the Science Education Program. C.C. was supported in part by the Maryland Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors were involved in aspects of the experimental design. C.C. and J.L.B. conceived and directed the project. D.L. performed almost all of the experiments and produced most of the figures. E.F.-S. generated most of the mutants and conducted in silico analysis of MpACS gene expression. A.C. and U.A. made initial discoveries and performed preliminary experiments. J.M.C. cloned MpACS1 and MpACS2 for yeast expression and generated the ACS tree. J.L.B. generated the CTR1 and EIN3 trees. C.C. wrote the paper with contributions from J.L.B., D.L. and E.F.-S. All of the authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to John L. Bowman or Caren Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks Roberto Salano, Anna Stepanova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Data 1, Methods 1 and 2, Table 1 and References.

Reporting Summary

Supplementary Data 2

MpACS1 and MpACS2 expression data from publicly available RNA-seq libraries (source data for Supplementary Fig. 10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Flores-Sandoval, E., Ahtesham, U. et al. Ethylene-independent functions of the ethylene precursor ACC in Marchantia polymorpha. Nat. Plants 6, 1335–1344 (2020). https://doi.org/10.1038/s41477-020-00784-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-00784-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing