Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The prevalence, evolution and chromatin signatures of plant regulatory elements

Abstract

Chromatin accessibility and modification is a hallmark of regulatory DNA, the study of which led to the discovery of cis-regulatory elements (CREs). Here, we characterize chromatin accessibility, histone modifications and sequence conservation in 13 plant species. We identified thousands of putative CREs and revealed that distal CREs are prevalent in plants, especially in species with large and complex genomes. The majority of distal CREs have been moved away from their target genes by transposable-element (TE) proliferation, but a substantial number of distal CREs also seem to be created by TEs. Finally, plant distal CREs are associated with three major types of chromatin signatures that are distinct from metazoans. Taken together, these results suggest that CREs are prevalent in plants, highly dynamic during evolution and function through distinct chromatin pathways to regulate gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The prevalence of distal accessible regions is a consequence of genome size.
Fig. 2: dACRs are preserved between species.
Fig. 3: TEs play important roles in the distribution of ACRs across plant genomes.
Fig. 4: ACRs are characterized by distinct and conserved chromatin states depending on their distance to genes.
Fig. 5: The chromatin states of dACRs are conserved between species.

Similar content being viewed by others

Data availability

The data generated in this study have been uploaded to the Gene Expression Omnibus (GEO) database and can be retrieved through accession number GSE128434. The data from this study can also be viewed interactively on the publicly accessible epigenome browser at http://epigenome.genetics.uga.edu/PlantEpigenome/.

References

  1. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    CAS  PubMed  Google Scholar 

  2. Priest, H. D., Filichkin, S. A. & Mockler, T. C. cis-Regulatory elements in plant cell signaling. Curr. Opin. Plant Biol. 12, 643–649 (2009).

    CAS  PubMed  Google Scholar 

  3. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    CAS  PubMed  Google Scholar 

  4. Sakabe, N. J., Savic, D. & Nobrega, M. A. Transcriptional enhancers in development and disease. Genome Biol. 13, 238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mishra, A. & Hawkins, R. D. Three-dimensional genome architecture and emerging technologies: looping in disease. Genome Med. 9, 87 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    CAS  PubMed  Google Scholar 

  9. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sebe-Pedros, A. et al. The dynamic regulatory genome of capsaspora and the origin of animal multicellularity. Cell 165, 1224–1237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber, B., Zicola, J., Oka, R. & Stam, M. Plant enhancers: a call for discovery. Trends Plant Sci. 21, 974–987 (2016).

    CAS  PubMed  Google Scholar 

  14. Marand, A. P., Zhang, T., Zhu, B. & Jiang, J. M. Towards genome-wide prediction and characterization of enhancers in plants. Biochim. Biophys. Acta 1860, 131–139 (2017).

    CAS  Google Scholar 

  15. Salvi, S. et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl Acad. Sci. USA 104, 11376–11381 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Louwers, M. et al. Tissue- and expression level-specific chromatin looping at maize b1 epialleles. Plant Cell 21, 832–842 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, G. et al. Complex genetic architecture underlies maize tassel domestication. New Phytol. 214, 852–864 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adrian, J. et al. cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22, 1425–1440 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McGarry, R. C. & Ayre, B. G. A. DNA element between At4g28630 and At4g28640 confers companion-cell specific expression following the sink-to-source transition in mature minor vein phloem. Planta 228, 839–849 (2008).

    CAS  PubMed  Google Scholar 

  21. Yang, W. et al. An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. Plant Physiol. 139, 1421–1432 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, L. et al. Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T. Nat. Commun. 5, 4558 (2014).

    CAS  PubMed  Google Scholar 

  23. Rodgers-Melnick, E., Vera, D. L., Bass, H. W. & Buckler, E. S. Open chromatin reveals the functional maize genome. Proc. Natl Acad. Sci. USA 113, E3177–E3184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509 (2017).

    CAS  PubMed  Google Scholar 

  25. Li, X. et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20, 259–276 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiu, Z. K. et al. Identification of regulatory DNA elements using genome-wide mapping of DNase I hypersensitive sites during tomato fruit development. Mol. Plant 9, 1168–1182 (2016).

    CAS  PubMed  Google Scholar 

  27. Zhang, W. et al. High-resolution mapping of open chromatin in the rice genome. Genome Res. 22, 151–162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, W., Zhang, T., Wu, Y. & Jiang, J. Open chromatin in plant genomes. Cytogenet. Genome Res. 143, 18–27 (2014).

    CAS  PubMed  Google Scholar 

  29. Zhang, W. L., Zhang, T., Wu, Y. F. & Jiang, J. M. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24, 2719–2731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu, P. et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4, 784–791 (2018).

    CAS  PubMed  Google Scholar 

  31. Chua, Y. L., Watson, L. A. & Gray, J. C. The transcriptional enhancer of the pea plastocyanin gene associates with the nuclear matrix and regulates gene expression through histone acetylation. Plant Cell 15, 1468–1479 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oka, R. et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol. 18, 137 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Lu, Z., Ricci, W. A., Schmitz, R. J. & Zhang, X. Identification of cis-regulatory elements by chromatin structure. Curr. Opin. Plant Biol. 42, 90–94 (2018).

    CAS  PubMed  Google Scholar 

  34. Tsompana, M. & Buck, M. J. Chromatin accessibility: a window into the genome. Epigenet. Chromatin 7, 33 (2014).

    Google Scholar 

  35. Zhu, B., Zhang, W. L., Zhang, T., Liu, B. & Jiang, J. M. Genome-wide prediction and validation of intergenic enhancers in Arabidopsis using open chromatin signatures. Plant Cell 27, 2415–2426 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sullivan, A. M. et al. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep. 8, 2015–2030 (2014).

    CAS  PubMed  Google Scholar 

  37. Sijacic, P., Bajic, M., McKinney, E. C., Meagher, R. B. & Deal, R. B. Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks. Plant J. 94, 215–231 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Maher, K. A. et al. Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules. Plant Cell 30, 15–36 (2017).

  40. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 1–9 (2015).

    Google Scholar 

  41. Lu, Z., Hofmeister, B. T., Vollmers, C., DuBois, R. M. & Schmitz, R. J. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res. 45, e41 (2017).

    PubMed  Google Scholar 

  42. Bajic, M., Maher, K. A. & Deal, R. B. Identification of open chromatin regions in plant genomes using ATAC-seq. Methods Mol. Biol. 1675, 183–201 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haring, M. et al. The role of DNA methylation, nucleosome occupancy and histone modifications in paramutation. Plant J. 63, 366–378 (2010).

    CAS  PubMed  Google Scholar 

  44. Wang, J. et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Grigoriev, I. V. et al. The Genome Portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 40, D26–D32 (2012).

    CAS  PubMed  Google Scholar 

  46. Nordberg, H. et al. The Genome Portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).

    CAS  PubMed  Google Scholar 

  47. Turco, G., Schnable, J. C., Pedersen, B. & Freeling, M. Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses. Front. Plant Sci. 4, 170 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kidwell, M. G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49–63 (2002).

    CAS  PubMed  Google Scholar 

  49. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    CAS  PubMed  Google Scholar 

  50. Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).

    CAS  PubMed  Google Scholar 

  51. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Flemr, M. et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816 (2013).

    CAS  PubMed  Google Scholar 

  53. Moriyama, Y. & Koshiba-Takeuchi, K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Brief. Funct. Genom. 17, 329–338 (2018).

    CAS  Google Scholar 

  54. Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010).

    CAS  PubMed  Google Scholar 

  56. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    CAS  PubMed  Google Scholar 

  57. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, X. et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129 (2007).

    PubMed  PubMed Central  Google Scholar 

  60. Wiles, E. T. & Selker, E. U. H3K27 methylation: a promiscuous repressive chromatin mark. Curr. Opin. Genet. Dev. 43, 31–37 (2017).

    CAS  PubMed  Google Scholar 

  61. Ricci, W. A. et al. Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants https://doi.org/10.1038/s41477-019-0547-0 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Harper, L., Gardiner, J., Andorf, C. & Lawrence, C. J. MaizeGDB: the maize genetics and genomics database. Methods Mol. Biol. 1374, 187–202 (2016).

  66. Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

    CAS  PubMed  Google Scholar 

  68. Harkess, A. et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 8, 1279 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Michael, T. P. et al. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J. 89, 617–635 (2017).

    CAS  PubMed  Google Scholar 

  70. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Vera Alvarez, R., Pongor, L. S., Marino-Ramirez, L. & Landsman, D. TPMCalculator: one-step software to quantify mRNA abundance of genomic features. Bioinformatics 35, 1960–1962 (2018).

  74. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  76. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, Y. P. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  79. Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).

    PubMed  PubMed Central  Google Scholar 

  80. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. Nbclust: an R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).

    Google Scholar 

  82. RepeatMasker v.Open-4.0 (Smit, A.F.A., Hubley, R. & Green, P.; 2013–2015); http://www.repeatmasker.org

Download references

Acknowledgements

We thank R. Deal for providing the H2A.Z antibodies used in this study. This work was funded by the NSF IOS-1546867 and NSF IOS-1856627 to R.J.S. and X.Z., NSF IOS-1238142 to X.Z. and NSF IOS-1339194 to R.J.S. R.J.S. acknowledges support from the Technical University of Munich-Institute for Advanced Study funded by the German Excellent Initiative and the European Seventh Framework Programme under grant agreement no. 291763. R.J.S. is a Pew Scholar in the Biomedical Sciences, supported by The Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and R.J.S conceived and designed experiments. Z.L. performed experiments. Z.L., A.P.M., W.A.R. and C.L.E. analysed the data. Z.L., X.Z. and R.J.S. wrote the paper.

Corresponding authors

Correspondence to Xiaoyu Zhang or Robert J. Schmitz.

Ethics declarations

Competing interests

R.J.S. and X.Z. are co-founders of REquest Genomics, LLC, a company that provides epigenomics services.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Supplementary Tables

Supplementary Table 1: ACRs identified in A. thaliana. Supplementary Table 2: ACRs identified in E. salsugineum. Supplementary Table 3: ACRs identified in P. trichocarpa. Supplementary Table 4: ACRs identified in P. vulgaris. Supplementary Table 5: ACRs identified in G. max. Supplementary Table 6: ACRs identified in S. polyrhiza. Supplementary Table 7: ACRs identified in A. officinalis. Supplementary Table 8: ACRs identified in B. distachyon. Supplementary Table 9: ACRs identified in H. vulgare. Supplementary Table 10: ACRs identified in O. Sativa. Supplementary Table 11: ACRs identified in S. viridis. Supplementary Table 12: ACRs identified in S. bicolor. Supplementary Table 13: ACRs identified in Z. mays. Supplementary Table 14: summary statistics for ATAC-seq. Supplementary Table 15: summary statistics for ChIP-seq. Supplementary Table 16: summary statistics for RNA-seq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Marand, A.P., Ricci, W.A. et al. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5, 1250–1259 (2019). https://doi.org/10.1038/s41477-019-0548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0548-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing