Widespread long-range cis-regulatory elements in the maize genome

Abstract

Genetic mapping studies on crops suggest that agronomic traits can be controlled by gene–distal intergenic loci. Despite the biological importance and the potential agronomic utility of these loci, they remain virtually uncharacterized in all crop species to date. Here, we provide genetic, epigenomic and functional molecular evidence to support the widespread existence of gene–distal (hereafter, distal) loci that act as long-range transcriptional cis-regulatory elements (CREs) in the maize genome. Such loci are enriched for euchromatic features that suggest their regulatory functions. Chromatin loops link together putative CREs with genes and recapitulate genetic interactions. Putative CREs also display elevated transcriptional enhancer activities, as measured by self-transcribing active regulatory region sequencing. These results provide functional support for the widespread existence of CREs that act over large genomic distances to control gene expression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: ACRs in the maize genome.
Fig. 2: Chromatin attributes of dACRs and patterns among dACR-flanking genes.
Fig. 3: Hi-C and HiChIP identify dACR–gene interactions.
Fig. 4: Loop strength identifies specific CRE–gene regulatory interactions.
Fig. 5: dACRs display elevated transcriptional enhancer capacities.

Data availability

The data generated from this study has been uploaded to the Gene Expression Omnibus database and can be retrieved through accession number GSE120304. Additionally, the data from this study can be viewed interactively on the publicly accessible epigenome browser http://epigenome.genetics.uga.edu/PlantEpigenome/. The STARR-seq plasmid sequence and additional information can be found at Addgene, deposit number 117379 (https://www.addgene.org/117379/).

Code availability

The code used for analyses can be accessed at https://github.com/schmitzlab/Widespread-Long-range-Cis-Regulatory-Elements-in-the-Maize-Genome/.

References

  1. 1.

    Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

  2. 2.

    Weber, B., Zicola, J., Oka, R. & Stam, M. Plant enhancers: a call for discovery. Trends Plant Sci. 21, 974–987 (2016).

  3. 3.

    Marand, A. P., Zhang, T., Zhu, B. & Jiang, J. Towards genome-wide prediction and characterization of enhancers in plants. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 131–139 (2017).

  4. 4.

    Wallace, J. G. et al. Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet. 10, e1004845 (2014).

  5. 5.

    Huang, C. et al. ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl Acad. Sci. USA 115, E334–E341 (2018).

  6. 6.

    Salvi, S. et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl Acad. Sci. USA 104, 11376–11381 (2007).

  7. 7.

    Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

  8. 8.

    Zheng, L. et al. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. J. Exp. Bot. 66, 3917–3930 (2015).

  9. 9.

    Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

  10. 10.

    Iwafuchi-Doi, M. et al. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol. Cell 62, 79–91 (2016).

  11. 11.

    Rodgers-Melnick, E., Vera, D. L., Bass, H. W. & Buckler, E. S. Open chromatin reveals the functional maize genome. Proc. Natl Acad. Sci. USA 113, E3177–E3184 (2016).

  12. 12.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

  13. 13.

    Lu, Z., Hofmeister, B. T., Vollmers, C., DuBois, R. M. & Schmitz, R. J. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res. 45, e41 (2017).

  14. 14.

    Oka, R. et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol. 18, 137 (2017).

  15. 15.

    Zhao, H. et al. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome. Plant Physiol. 176, 2789–2803 (2018).

  16. 16.

    Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509 (2017).

  17. 17.

    Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

  18. 18.

    O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 166, 1598 (2016).

  19. 19.

    Galli, M. et al. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat. Commun. 9, 4526 (2018).

  20. 20.

    Kremling, K. A. G. et al. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555, 520–523 (2018).

  21. 21.

    Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

  22. 22.

    Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

  23. 23.

    Zhang, W. et al. High-resolution mapping of open chromatin in the rice genome. Genome Res. 22, 151–162 (2012).

  24. 24.

    Zhang, W., Zhang, T., Wu, Y. & Jiang, J. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24, 2719–2731 (2012).

  25. 25.

    Zhang, X., Bernatavichute, Y. V., Cokus, S., Pellegrini, M. & Jacobsen, S. E. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10, R62 (2009).

  26. 26.

    Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl Acad. Sci. USA 113, 9111–9116 (2016).

  27. 27.

    Roudier, F. et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30, 1928–1938 (2011).

  28. 28.

    Sullivan, A. M. et al. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep. 8, 2015–2030 (2014).

  29. 29.

    Zhang, X. et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129 (2007).

  30. 30.

    Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

  31. 31.

    Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

  32. 32.

    Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ferhat, A. Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun. 10, 4221 (2019).

  33. 33.

    Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

  34. 34.

    Bennetzen, J. L. & Wang, X. Relationships between gene structure and genome instability in flowering plants. Mol. Plant 11, 407–413 (2018).

  35. 35.

    Crisp, P. A., Noshay, J. M., Anderson, S. N. & Springer, N. M. Opportunities to use DNA methylation to distil functional elements in large crop genomes. Mol. Plant 12, 282–284 (2019).

  36. 36.

    Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852 (2017).

  37. 37.

    Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

  38. 38.

    Rowley, M. J. et al. Condensin II counteracts cohesin and RNA polymerase II in the establishment of 3D chromatin organization. Cell Rep. 26, 2890–2903 (2019).

  39. 39.

    Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).

  40. 40.

    Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12, 1659–1672 (2017).

  41. 41.

    Benfey, P. N. & Chua, N. H. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 959–966 (1990).

  42. 42.

    Ow, D. W., Jacobs, J. D. & Howell, S. H. Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by use of the firefly luciferase gene as a reporter of promoter activity. Proc. Natl Acad. Sci. USA 84, 4870–4874 (1987).

  43. 43.

    Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

  44. 44.

    Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

  45. 45.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

  46. 46.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  47. 47.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

  48. 48.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  49. 49.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

  50. 50.

    Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

  51. 51.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  52. 52.

    Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

  53. 53.

    Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

  54. 54.

    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

  55. 55.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

  56. 56.

    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

  57. 57.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

  58. 58.

    Guo, Y., Mahony, S. & Gifford, D. K. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol. 8, e1002638–e1002638 (2012).

  59. 59.

    Hartigan, J. A. & Wong, M. A. Algorithm AS 136: a K-means clustering algorithm. J. R. Stat. Soc. Ser. C. 28, 100–108 (1979).

  60. 60.

    Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126, 1189–1201 (2006).

  61. 61.

    Walley, J. W. et al. Integration of omic networks in a developmental atlas of maize. Science 353, 814–818 (2016).

  62. 62.

    Maere, S., Heymans, K. & Kuiper, M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).

  63. 63.

    Harper, L., Gardiner, J., Andorf, C. & Lawrence, C. J. in Plant Bioinformatics: Methods and Protocols (ed Edwards, D.) 187–202 (Springer, 2016).

  64. 64.

    Bukowski, R. et al. Construction of the third-generation Zea mays haplotype map. Gigascience 7, 1–12 (2018).

Download references

Acknowledgements

This work was funded by the National Science Foundation (NSF) grant no. IOS-1546867 to R.J.S. and X.Z.; grant no. NSF IOS-1238142 to X.Z and M.J.S.; and grant no. NSF IOS-1456950 and NSF IOS-1546873 to A.G. F.J. and R.J.S. acknowledge support from the Technical University of Munich–Institute for Advanced Study funded by the German Excellent Initiative and the European Seventh Framework Programme under grant agreement no. 291763. F.J. is also supported by the SFB/Sonderforschungsbereich924 of the Deutsche Forschungsgemeinschaft. R.J.S. is a Pew Scholar in the Biomedical Sciences, supported by The Pew Charitable Trusts. M.C.-T. acknowledges support from the Impuls-und Vernetzungsfonds of the Helmholtz-Gemeinschaft (grant no. VH-NG-1219). J.Z. and his team is supported by the Programme for Guangdong Introducing Innovative and Entrepreneurial Teams (grant no. 2016ZT06S172). This work was supported in part by the National Institutes of Health Pathway to Independence Award no. K99/R00 GM127671 (M.J.R.) and the US Public Health Service Award (R01) no. GM035463 (V.G.C.) from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

W.A.R., Z.L., M.J.R., V.G.C., J.Z., M.J.S., E.S.B., N.M.S., R.J.S. and X.Z. conceived and designed the experiments. W.A.R., Z.L., C.L.E., N.G.M., J.M.N. and M.G. performed the experiments. C.L.E., N.G.M., M.G. and A.G. performed the DAP-seq experiments. W.A.R., Z.L., L.J., A.P.M., M.K.M.-G., M.C.-T., F.J. and X.Z. performed the computational analyses. W.A.R., Z.L., L.J., A.P.M., M.K.M.-G. created the figures. W.A.R., A.P.M., R.J.S. and X.Z. wrote the manuscript. W.A.R., R.J.S. and X.Z. revised the manuscript. All authors read and approved the final manuscript.

Correspondence to Robert J. Schmitz or Xiaoyu Zhang.

Ethics declarations

Competing interests

R.J.S. and X.Z. are cofounders of REquest Genomics, LLC, a company that provides epigenomics services.

Additional information

Peer review information Nature Plants thanks Dao-Xiu Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Tables 5–12.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ricci, W.A., Lu, Z., Ji, L. et al. Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants 5, 1237–1249 (2019) doi:10.1038/s41477-019-0547-0

Download citation

Further reading