Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread long-range cis-regulatory elements in the maize genome

An Author Correction to this article was published on 06 February 2020

This article has been updated

Abstract

Genetic mapping studies on crops suggest that agronomic traits can be controlled by gene–distal intergenic loci. Despite the biological importance and the potential agronomic utility of these loci, they remain virtually uncharacterized in all crop species to date. Here, we provide genetic, epigenomic and functional molecular evidence to support the widespread existence of gene–distal (hereafter, distal) loci that act as long-range transcriptional cis-regulatory elements (CREs) in the maize genome. Such loci are enriched for euchromatic features that suggest their regulatory functions. Chromatin loops link together putative CREs with genes and recapitulate genetic interactions. Putative CREs also display elevated transcriptional enhancer activities, as measured by self-transcribing active regulatory region sequencing. These results provide functional support for the widespread existence of CREs that act over large genomic distances to control gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACRs in the maize genome.
Fig. 2: Chromatin attributes of dACRs and patterns among dACR-flanking genes.
Fig. 3: Hi-C and HiChIP identify dACR–gene interactions.
Fig. 4: Loop strength identifies specific CRE–gene regulatory interactions.
Fig. 5: dACRs display elevated transcriptional enhancer capacities.

Similar content being viewed by others

Data availability

The data generated from this study has been uploaded to the Gene Expression Omnibus database and can be retrieved through accession number GSE120304. Additionally, the data from this study can be viewed interactively on the publicly accessible epigenome browser http://epigenome.genetics.uga.edu/PlantEpigenome/. The STARR-seq plasmid sequence and additional information can be found at Addgene, deposit number 117379 (https://www.addgene.org/117379/).

Code availability

The code used for analyses can be accessed at https://github.com/schmitzlab/Widespread-Long-range-Cis-Regulatory-Elements-in-the-Maize-Genome/.

Change history

  • 06 February 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    CAS  PubMed  Google Scholar 

  2. Weber, B., Zicola, J., Oka, R. & Stam, M. Plant enhancers: a call for discovery. Trends Plant Sci. 21, 974–987 (2016).

    CAS  PubMed  Google Scholar 

  3. Marand, A. P., Zhang, T., Zhu, B. & Jiang, J. Towards genome-wide prediction and characterization of enhancers in plants. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 131–139 (2017).

    CAS  PubMed  Google Scholar 

  4. Wallace, J. G. et al. Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet. 10, e1004845 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Huang, C. et al. ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl Acad. Sci. USA 115, E334–E341 (2018).

    CAS  PubMed  Google Scholar 

  6. Salvi, S. et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl Acad. Sci. USA 104, 11376–11381 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng, L. et al. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. J. Exp. Bot. 66, 3917–3930 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    CAS  PubMed  Google Scholar 

  10. Iwafuchi-Doi, M. et al. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol. Cell 62, 79–91 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodgers-Melnick, E., Vera, D. L., Bass, H. W. & Buckler, E. S. Open chromatin reveals the functional maize genome. Proc. Natl Acad. Sci. USA 113, E3177–E3184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu, Z., Hofmeister, B. T., Vollmers, C., DuBois, R. M. & Schmitz, R. J. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res. 45, e41 (2017).

    PubMed  Google Scholar 

  14. Oka, R. et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol. 18, 137 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Zhao, H. et al. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome. Plant Physiol. 176, 2789–2803 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509 (2017).

    CAS  PubMed  Google Scholar 

  17. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 166, 1598 (2016).

    PubMed  Google Scholar 

  19. Galli, M. et al. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat. Commun. 9, 4526 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Kremling, K. A. G. et al. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555, 520–523 (2018).

    CAS  PubMed  Google Scholar 

  21. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  23. Zhang, W. et al. High-resolution mapping of open chromatin in the rice genome. Genome Res. 22, 151–162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, W., Zhang, T., Wu, Y. & Jiang, J. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24, 2719–2731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, X., Bernatavichute, Y. V., Cokus, S., Pellegrini, M. & Jacobsen, S. E. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10, R62 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl Acad. Sci. USA 113, 9111–9116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roudier, F. et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30, 1928–1938 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sullivan, A. M. et al. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep. 8, 2015–2030 (2014).

    CAS  PubMed  Google Scholar 

  29. Zhang, X. et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129 (2007).

    PubMed  PubMed Central  Google Scholar 

  30. Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    CAS  PubMed  Google Scholar 

  31. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ferhat, A. Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun. 10, 4221 (2019).

  33. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    CAS  PubMed  Google Scholar 

  34. Bennetzen, J. L. & Wang, X. Relationships between gene structure and genome instability in flowering plants. Mol. Plant 11, 407–413 (2018).

    CAS  PubMed  Google Scholar 

  35. Crisp, P. A., Noshay, J. M., Anderson, S. N. & Springer, N. M. Opportunities to use DNA methylation to distil functional elements in large crop genomes. Mol. Plant 12, 282–284 (2019).

    CAS  PubMed  Google Scholar 

  36. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    CAS  PubMed  Google Scholar 

  38. Rowley, M. J. et al. Condensin II counteracts cohesin and RNA polymerase II in the establishment of 3D chromatin organization. Cell Rep. 26, 2890–2903 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12, 1659–1672 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Benfey, P. N. & Chua, N. H. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 959–966 (1990).

    CAS  PubMed  Google Scholar 

  42. Ow, D. W., Jacobs, J. D. & Howell, S. H. Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by use of the firefly luciferase gene as a reporter of promoter activity. Proc. Natl Acad. Sci. USA 84, 4870–4874 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    CAS  PubMed  Google Scholar 

  44. Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Guo, Y., Mahony, S. & Gifford, D. K. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol. 8, e1002638–e1002638 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: a K-means clustering algorithm. J. R. Stat. Soc. Ser. C. 28, 100–108 (1979).

    Google Scholar 

  60. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126, 1189–1201 (2006).

    CAS  PubMed  Google Scholar 

  61. Walley, J. W. et al. Integration of omic networks in a developmental atlas of maize. Science 353, 814–818 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maere, S., Heymans, K. & Kuiper, M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).

    CAS  PubMed  Google Scholar 

  63. Harper, L., Gardiner, J., Andorf, C. & Lawrence, C. J. in Plant Bioinformatics: Methods and Protocols (ed Edwards, D.) 187–202 (Springer, 2016).

  64. Bukowski, R. et al. Construction of the third-generation Zea mays haplotype map. Gigascience 7, 1–12 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Science Foundation (NSF) grant no. IOS-1546867 to R.J.S. and X.Z.; grant no. NSF IOS-1238142 to X.Z and M.J.S.; and grant no. NSF IOS-1456950 and NSF IOS-1546873 to A.G. F.J. and R.J.S. acknowledge support from the Technical University of Munich–Institute for Advanced Study funded by the German Excellent Initiative and the European Seventh Framework Programme under grant agreement no. 291763. F.J. is also supported by the SFB/Sonderforschungsbereich924 of the Deutsche Forschungsgemeinschaft. R.J.S. is a Pew Scholar in the Biomedical Sciences, supported by The Pew Charitable Trusts. M.C.-T. acknowledges support from the Impuls-und Vernetzungsfonds of the Helmholtz-Gemeinschaft (grant no. VH-NG-1219). J.Z. and his team is supported by the Programme for Guangdong Introducing Innovative and Entrepreneurial Teams (grant no. 2016ZT06S172). This work was supported in part by the National Institutes of Health Pathway to Independence Award no. K99/R00 GM127671 (M.J.R.) and the US Public Health Service Award (R01) no. GM035463 (V.G.C.) from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

W.A.R., Z.L., M.J.R., V.G.C., J.Z., M.J.S., E.S.B., N.M.S., R.J.S. and X.Z. conceived and designed the experiments. W.A.R., Z.L., C.L.E., N.G.M., J.M.N. and M.G. performed the experiments. C.L.E., N.G.M., M.G. and A.G. performed the DAP-seq experiments. W.A.R., Z.L., L.J., A.P.M., M.K.M.-G., M.C.-T., F.J. and X.Z. performed the computational analyses. W.A.R., Z.L., L.J., A.P.M., M.K.M.-G. created the figures. W.A.R., A.P.M., R.J.S. and X.Z. wrote the manuscript. W.A.R., R.J.S. and X.Z. revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Robert J. Schmitz or Xiaoyu Zhang.

Ethics declarations

Competing interests

R.J.S. and X.Z. are cofounders of REquest Genomics, LLC, a company that provides epigenomics services.

Additional information

Peer review information Nature Plants thanks Dao-Xiu Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Tables 5–12.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricci, W.A., Lu, Z., Ji, L. et al. Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants 5, 1237–1249 (2019). https://doi.org/10.1038/s41477-019-0547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0547-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing