Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi


Global food security depends on cereal crops with durable disease resistance. Most cereals are colonized by rust fungi, which are pathogens of major significance for global agriculture1. Cereal rusts display a high degree of host specificity and one rust species or forma specialis generally colonizes only one cereal host2. Exploiting the non-host status and transferring non-host resistance genes between cereal crop species has been proposed as a strategy for durable rust resistance breeding. The molecular determinants that define the host status to rusts, however, are largely unknown. Here, we show that orthologous genes at the Rphq2 locus for quantitative leaf rust resistance from cultivated barley3 and Rph22 from wild bulbous barley4 affect the host status to leaf rusts. Both genes encode lectin receptor-like kinases. We transformed Rphq2 and Rph22 into an experimental barley line that has been bred for susceptibility to non-adapted leaf rusts, which allowed us to quantify resistance responses against various leaf rust species. Rphq2 conferred a much stronger resistance to the leaf rust of wild bulbous barley than to the leaf rust adapted to cultivated barley, while for Rph22 the reverse was observed. We hypothesize that adapted leaf rust species mitigate perception by cognate host receptors by lowering ligand recognition. Our results provide an example of orthologous genes that connect the quantitative host with non-host resistance to cereal rusts. Such genes provide a basis to exploit non-host resistance in molecular breeding.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Rphq2 and Rph22 phenotype and mapping.
Fig. 2: Resistance mediated by Hv-LecRK and Hb-LecRK is stronger against non-adapted than against adapted leaf rust species.
Fig. 3: Molecular characterization of Hv-LecRK and Hb-LecRK proteins.

Data availability

All data are available in the main text or the Supplementary Information. GenBank accession numbers: MK512576MK512578, MK530949, MK530950, MK569504 and MN128516MN128521.


  1. 1.

    Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    PubMed  Google Scholar 

  2. 2.

    Dracatos, P. M., Haghdoust, R., Singh, D. & Park, R. F. Exploring and exploiting the boundaries of host specificity using the cereal rust and mildew models. New Phytol. 218, 453–462 (2018).

    PubMed  Google Scholar 

  3. 3.

    Yeo, F. K. et al. Haplotype divergence and multiple candidate genes at Rphq2, a partial resistance QTL of barley to Puccinia hordei. Theor. Appl. Genet. 129, 289–304 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Johnston, P. A., Niks, R. E., Meiyalaghan, V., Blanchet, E. & Pickering, R. Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theor. Appl. Genet. 126, 1613–1625 (2013).

    PubMed  Google Scholar 

  5. 5.

    Jones, J. D., Vance, R. E. & Dangl, J. L. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395 (2016).

    PubMed  Google Scholar 

  6. 6.

    Dardick, C. & Ronald, P. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog. 2, e2 (2006).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lee, H. A. et al. Current understandings of plant nonhost resistance. Mol. Plant Microbe Interact. 30, 5–15 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Fonseca, J. P. & Mysore, K. S. Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops. Plant Sci. 279, 108–116 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Schulze-Lefert, P. & Panstruga, R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16, 117–125 (2011).

    CAS  PubMed  Google Scholar 

  11. 11.

    Niks, R. E. & Marcel, T. C. Nonhost and basal resistance: how to explain specificity? New Phytol. 182, 817–828 (2009).

    PubMed  Google Scholar 

  12. 12.

    Cevik, V. et al. Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida). Proc. Natl Acad. Sci. USA 116, 2767–2773 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    Anikster, Y. Host specificity versus plurivority in barley leaf rusts and their microcyclic relatives. Mycol. Res. 93, 175–181 (1989).

    Google Scholar 

  14. 14.

    Blattner, F. R. Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). New Phytol. 169, 603–614 (2006).

    CAS  PubMed  Google Scholar 

  15. 15.

    Bettgenhaeuser, J. et al. The genetic architecture of colonization resistance in Brachypodium distachyon to non-adapted stripe rust (Puccinia striiformis) isolates. PLoS Genet. 14, e1007637 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Atienza, S. G., Jafary, H. & Niks, R. E. Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220, 71–79 (2004).

    CAS  PubMed  Google Scholar 

  17. 17.

    Jafary, H., Albertazzi, G., Marcel, T. C. & Niks, R. E. High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178, 2327–2339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gilbert, B. et al. Components of Brachypodium distachyon resistance to nonadapted wheat stripe rust pathogens are simply inherited. PLoS Genet. 14, e1007636 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Qi, X., Niks, R. E., Stam, P. & Lindhout, P. Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor. Appl. Genet. 96, 1205–1215 (1998).

    CAS  Google Scholar 

  20. 20.

    Marcel, T. C., Aghnoum, R., Durand, J., Varshney, R. K. & Niks, R. E. Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Mol. Plant Microbe Interact. 20, 1604–1615 (2007).

    CAS  PubMed  Google Scholar 

  21. 21.

    Yeo, F. K. et al. Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. Theor. Appl. Genet. 127, 325–337 (2014).

    CAS  PubMed  Google Scholar 

  22. 22.

    Hurni, S. et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc. Natl Acad. Sci. USA 112, 8780–8785 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Wang, Y. et al. Arabidopsis lectin receptor kinases LecRK-IX.1 and LecRK-IX.2 are functional analogs in regulating Phytophthora resistance and plant cell death. Mol. Plant Microbe Interact. 28, 1032–1048 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    Choi, J. et al. Identification of a plant receptor for extracellular ATP. Science 343, 290–294 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Kutschera, A. et al. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science 364, 178–181 (2019).

    CAS  PubMed  Google Scholar 

  26. 26.

    Bouwmeester, K. et al. The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog. 7, e1001327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wang, Y. & Bouwmeester, K. L-type lectin receptor kinases: new forces in plant immunity. PloS Pathog. 13, e1006433 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Wulff, B. B. & Moscou, M. J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5, 692 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Inoue, Y. et al. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357, 80–83 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Parlevliet, J. E. Evaluation of the concept of horizontal resistance in the barley/Puccinia hordei host– pathogen relationship. Phytopathology 66, 494–497 (1976).

    Google Scholar 

  31. 31.

    Martinez, F., Niks, R. E., Moral, A., Urbano, J. M. & Rubiales, D. Search for partial resistance to leaf rust in a collection of ancient Spanish wheats. Hereditas 135, 193–197 (2001).

    CAS  PubMed  Google Scholar 

  32. 32.

    Niks, R.E., Parlevliet, J.E., Lindhout, P. & Bai, Y. Breeding Crops with resistance to diseases and pests (Wageningen Academic, 2011).

  33. 33.

    Parlevliet, J. E. Partial resistance of barley to leafrust, Puccinia hordei. I. Effect of cultivar and development stage on latent period. Euphytica 24, 21–27 (1975).

    Google Scholar 

  34. 34.

    Barnes, C. W. & Szabo, L. J. Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology 97, 717–727 (2007).

    CAS  PubMed  Google Scholar 

  35. 35.

    Zheng, Z. et al. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE 8, e70723 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Ochman, H., Gerber, A. S. & Hartl, D. L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34–41 (2007).

    CAS  PubMed  Google Scholar 

  39. 39.

    Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000).

    CAS  PubMed  Google Scholar 

  40. 40.

    Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J. & Kumlehn, J. Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, Triticale, and maize. Int. J. Plant Genomics 2009, 835608 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Larkin, M. A. et al. Clustal W and Clustal X v.2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Felsenstein, J. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166 (1989).

    Google Scholar 

Download references


We thank J. Bucher (Wageningen University & Research) for producing the time-lapse video, Y. Jiang (King Abdullah University of Science and Technology) for advising on the Rphq2/Rph22 functional analyses, and J. Rajaraman (IPK Gatersleben) for providing the plasma membrane marker plasmid. This publication is based on work supported by the King Abdullah University of Science and Technology Office of Sponsored Research under Award No. OSR-CRG2018-3768 (to Y.W. and S.G.K.), the New Zealand Institute for Plant & Food Research Limited Strategic Science Investment Fund (to P.A.J.), National Natural Science Foundation of China grant no. 31471756 (to X.Q.), and NWO-ALW (file number 849.13.002) as part of the ERA-CAPS project DURESTrit 13.006 (to Y.W.).

Author information




Y.W., X.Q., R.E.N. and S.G.K. designed research. Y.W., S.S., H.d.V., P.D. and P.A.J. performed molecular experiments. Y.W., S.S., H.d.V., P.D., A.V. and R.E.N. performed rust inoculations and phenotypic scorings. G.H. and J.K. stably transformed the barley line Golden SusPtrit. Y.W. and I.B. performed subcellular localization. Y.W., R.E.N. and S.G.K. wrote the paper. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Rients E. Niks or Simon G. Krattinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Peter Dracatos, Kirankumar Mysore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Supplementary Tables 1 and 2, and legend for the Supplementary Video.

Reporting Summary

Supplementary Video

Time-lapse video showing P. hordei development on barley plants expressing Rphq2 and Rph22.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Subedi, S., de Vries, H. et al. Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nat. Plants 5, 1129–1135 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing