Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interdomain interactions reveal the molecular evolution of the orange carotenoid protein

Abstract

The photoactive orange carotenoid protein (OCP) is a blue-light intensity sensor involved in cyanobacterial photoprotection. Three OCP families co-exist (OCPX, OCP1 and OCP2), having originated from the fusion of ancestral domain genes. Here, we report the characterization of an OCPX and the evolutionary characterization of OCP paralogues focusing on the role of the linker connecting the domains. The addition of the linker with specific amino acids enabled the photocycle of the OCP ancestor. OCPX is the paralogue closest to this ancestor. A second diversification gave rise to OCP1 and OCP2. OCPX and OCP2 present fast deactivation and weak antenna interaction. In OCP1, OCP deactivation became slower and interaction with the antenna became stronger, requiring a further protein to detach OCP from the antenna and accelerate its deactivation. OCP2 lost the tendency to dimerize, unlike OCPX and OCP1, and the role of its linker is slightly different, giving less controlled photoactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OCP evolution and OCP linker.
Fig. 2: Comparison of OCP 1, OCP2 and OCPX.
Fig. 3: OCP oligomeric state: native gel and size exclusion chromatography.
Fig. 4: CTD–NTD interactions.
Fig. 5: Photoactivity of OCP1-linker mutants.
Fig. 6: OCP1-linker mutants: interaction with PBS and FRP.

Similar content being viewed by others

Data availability

The sequences of the OCPs isolated and studied in this article are accessible in the GenBank/EMBL data libraries (or the IMG database) under the following accession numbers: slr1963 (OCP1 Synechocystis, IMG ID: 2514153952), Fdi2450 (OCP1 Tolypothrix, IMG ID: 2501541336), Fdi7374 (OCP2 Tolypothrix, IMG ID: 2501546328) and WA1_RS11680 (OCPX Scytonema, IMG ID: 2551963320). The protein sequences and their corresponding identifiers for the IMG database used for the phylogenetic analysis can be found in the Supplementary Information (available as an .xls file in the online version of the article). The additional data that support the findings of this study are available from the corresponding author upon request.

References

  1. Kirilovsky, D. & Kerfeld, C. A. Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants 2, 16180 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Kerfeld, C. A., Melnicki, M. R., Sutter, M. & Dominguez-Martin, M. A. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytol. 215, 937–951 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sluchanko, N. N., Slonimskiy, Y. B. & Maksimov, E. G. Features of protein−protein interactions in the cyanobacterial photoprotection mechanism. Biochemistry 82, 1592–1614 (2017).

    CAS  PubMed  Google Scholar 

  4. Kerfeld, C. A. et al. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11, 55–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wilson, A. et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl Acad. Sci. USA 105, 12075–12080 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leverenz, R. L. et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science 348, 1463–1466 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Konold, P. E. et al. Photoactivation mechanism, timing of protein secondary structure dynamics and carotenoid translocation in the orange carotenoid. J. Am. Chem. Soc. 141, 520–530 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Gupta, S. et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Natl Acad. Sci. USA 112, E5567–E5574 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, H. et al. Dramatic domain rearrangements of the cyanobacterial orange carotenoid protein upon photoactivation. Biochemistry 55, 1003–1009 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Maksimov, E. G. et al. The signaling state of orange carotenoid protein. Biophys. J. 109, 595–607 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maksimov, E. G. et al. A comparative study of three signaling forms of the orange carotenoid protein. Photosynth. Res. 130, 389–401 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Wilson, A. et al. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18, 992–1007 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gwizdala, M., Wilson, A. & Kirilovsky, D. In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in Synechocystis PCC 6803. Plant Cell 23, 2631–2643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilson, C. W. A. et al. The essential role of the N-terminal domain of the orange carotenoid protein in cyanobacterial photoprotection: importance of a positive charge for phycobilisome binding. Plant Cell 24, 1972–1983 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boulay, C., Wilson, A., D’haene, S. & Kirilovsky, D. Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc. Natl Acad. Sci. USA 107, 11620–11625 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sutter, M. et al. Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc. Natl Acad. Sci. USA 110, 10022–10027 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sluchanko, N. N. et al. The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP. Biochim. Biophys. Acta Bioenerg. 1858, 1–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Sluchanko, N. N., Slonimskiy, Y. B., Moldenhauer, M., Friedrich, T. & Maksimov, E. G. Deletion of the short N-terminal extension in OCP reveals the main site for FRP binding. FEBS Lett. 591, 1667–1676 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Lu, Y. et al. Native mass spectrometry analysis of oligomerization states of fluorescence recovery protein and orange carotenoid protein: Two proteins involved in the cyanobacterial photoprotection cycle. Biochemistry 56, 160–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Moldenhauer, M. et al. Interaction of the signaling state analog and the apoprotein form of the orange carotenoid protein with the fluorescence recovery protein. Photosynth. Res. 135, 125–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Thurotte, A. et al. The cyanobacterial fluorescence recovery protein has two distinct activities: orange carotenoid protein amino acids involved in FRP interaction. Biochim. Biophys. Acta Bioenerg. 1858, 308–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Bao, H. et al. Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. Nat. Plants 3, 17089 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Lechno-Yossef, S., Melnicki, M. R., Bao, H., Montgomery, B. L. & Kerfeld, C. A. Synthetic OCP heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection. Plant J. 91, 646–656 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Melnicki, M. R. et al. Structure, diversity, and evolution of a new family of soluble carotenoid-binding proteins in cyanobacteria. Mol. Plant 9, 1379–1394 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Muzzopappa, F. et al. The paralogs to the C-terminal domain of the cyanobacterial OCP are carotenoid donors to HCPs. Plant Physiol. 175, 1283–1303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kerfeld, C. A. Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth. Res. 81, 215–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Wilson, A. et al. Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. J. Biol. Chem. 285, 18364–18375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maksimov, E. G. et al. The unique protein-to-protein carotenoid transfer mechanism. Biophys. J. 113, 402–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moldenhauer, M. et al. Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism. Photosynth. Res. 133, 327–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Jallet, D. et al. Specificity of the cyanobacterial orange carotenoid protein: influences of orange carotenoid protein and phycobilisome structures. Plant Physiol. 164, 790–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Bernát, G. et al. Unique properties vs. common themes: the atypical cyanobacterium Gloeobacter violaceus PCC 7421 is capable of state transitions and blue-light-induced fluorescence quenching. Plant Cell Physiol. 53, 528–542 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Harris, D. et al. Structural rearrangements in the C-terminal domain homolog of orange carotenoid protein are crucial for carotenoid transfer. Commun. Biol. 1, 125 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Slonimskiy, Y. B. et al. Light-controlled carotenoid transfer between water-soluble proteins related to cyanobacterial photoprotection. FEBS J. 286, 1908–1924 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Maksimov, E. G. et al. Fluorescent labeling preserving OCP photoactivity reveals its reorganization during the photocycle. Biophys. J. 112, 827 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maksimov, E. G. et al. The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci. Rep. 7, 15548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. López-Igual, R. et al. Different functions of the paralogs to the N-terminal domain of the orange carotenoid protein in the cyanobacterium Anabaena sp. PCC 7120. Plant Physiol. 171, 1852–1866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wen, Y. et al. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation. Photosynth. Res. 1, 1–11 (2019).

    Google Scholar 

  38. Harris, D. et al. Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc. Natl Acad. Sci. USA 113, E1655–E1662 (2016).

    Article  CAS  Google Scholar 

  39. Sluchanko, N. N. et al. OCP–FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria. Nat. Commun. 9, 1–15 (2018).

    Article  CAS  Google Scholar 

  40. Bourcier De Carbon, C., Thurotte, A., Wilson, A., Perreau, F. & Kirilovsky, D. Biosynthesis of soluble carotenoid holoproteins in Escherichia coli. Sci. Rep. 5, 9085 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Cock, P. J. A. et al. Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wheeler, T. J., Clements, J. & Finn, R. D. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden markov models. BMC Bioinformatics 15, 7 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Cot for technical help, F. Andre for helping with the phylogenetic analysis, L. Tabares for assisting with molecular dynamics simulations and M. Guillaume Sarrailhe for helping in the construction of the three OCP mutants. This work was supported by grants from the Agence Nationale de la Recherche (RECYFUEL project (grant no. ANR-16-CE05- 0026)) and from the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 675006 (SE2B)). F.M.’s salary was financed by the European Union’s Horizon 2020 (project no. SE2B). The research was also supported by the Centre National de la Recherche Scientifique and the Commissariat à l’Energie Atomique. The French Infrastructure for Integrated Structural Biology (grant no. ANR-10-INBS-05) also partially supported this research.

Author information

Authors and Affiliations

Authors

Contributions

F.M. performed all the OCP characterization experiments and constructed some of the mutants. A.W. constructed almost all the OCP mutants. D.K. conceived the project, designed and supervised most of the experiments and analysed the data. The article was written by F.M. and D.K.

Corresponding author

Correspondence to Diana Kirilovsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Roberto Bassi and Conrad Mullineaux and other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Table 1.

Reporting Summary

Supplementary Dataset

Sequences of OCPs used for construction of the phylogenetic tree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzzopappa, F., Wilson, A. & Kirilovsky, D. Interdomain interactions reveal the molecular evolution of the orange carotenoid protein. Nat. Plants 5, 1076–1086 (2019). https://doi.org/10.1038/s41477-019-0514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0514-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing