Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza

Abstract

During arbuscular mycorrhizal symbiosis, colonization of the root is modulated in response to the physiological status of the plant, with regulation occurring locally and systemically. Here, we identify differentially expressed genes encoding CLAVATA3/ESR-related (CLE) peptides that negatively regulate colonization levels by modulating root strigolactone content. CLE function requires a receptor-like kinase, SUNN; thus, a CLE–SUNN–strigolactone feedback loop is one avenue through which the plant modulates colonization levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of M. truncatula CLE genes and MtCLE overexpression phenotypes.
Fig. 2: Overexpression of MtCLE33 and MtCLE53 in roots reduces strigolactone levels in a SUNN-dependent manner.
Fig. 3: Model for MtCLE33 and MtCLE53 function and their dependency on SUNN.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request. RNA sequencing raw reads are deposited in the NCBI Sequence Read Archive database (accession number SRP198429).

References

  1. Kobae, Y. et al. Plant Cell Physiol. 59, 544–553 (2018).

    Article  CAS  Google Scholar 

  2. Akiyama, K., Matsuzaki, K.-I. & Hayashi, H. Nature 435, 824–827 (2005).

    Article  CAS  Google Scholar 

  3. Besserer, A. et al. PLoS Biol. 4, e226 (2006).

    Article  Google Scholar 

  4. Genre, A. et al. New Phytol. 198, 190–202 (2013).

    Article  Google Scholar 

  5. Oldroyd, G. E. D. Nat. Rev. Microbiol. 11, 252–263 (2013).

    Article  CAS  Google Scholar 

  6. Menge, J. A. et al. New Phytol. 80, 575–578 (1978).

    Article  CAS  Google Scholar 

  7. Breuillin, F. et al. Plant J. 64, 1002–1017 (2010).

    Article  CAS  Google Scholar 

  8. Liu, W. et al. Plant Cell 23, 3853–3865 (2011).

    Article  CAS  Google Scholar 

  9. Kretzschmar, T. et al. Nature 483, 341–344 (2012).

    Article  CAS  Google Scholar 

  10. Vierheilig, H. et al. Soil Biol. Biochem. 32, 589–595 (2000).

    Article  CAS  Google Scholar 

  11. Vierheilig, H. J. Plant Physiol. 161, 339–341 (2004).

    Article  CAS  Google Scholar 

  12. Meixner, C. et al. Planta 222, 709–715 (2005).

    Article  CAS  Google Scholar 

  13. Solaiman, M. Z. et al. J. Plant Res. 113, 443–448 (2000).

    Article  Google Scholar 

  14. Morandi, D. et al. Mycorrhiza 10, 37–42 (2000).

    Article  CAS  Google Scholar 

  15. Wang, C., Reid, J. B. & Foo, E. Front. Plant Sci. 9, 988 (2018).

    Article  Google Scholar 

  16. Tsikou, D. et al. Science 362, 233–236 (2018).

    Article  CAS  Google Scholar 

  17. Sasaki, T. et al. Nat. Commun. 5, 4983 (2014).

    Article  CAS  Google Scholar 

  18. Fletcher, J. C. et al. Science 283, 1911–1914 (1999).

    Article  CAS  Google Scholar 

  19. Hastwell, A. H. et al. Sci. Rep. 7, 9384 (2017).

    Article  Google Scholar 

  20. Goad, D. M., Zhu, C. & Kellogg, E. A. New Phytol. 216, 605–616 (2016).

    Article  Google Scholar 

  21. Hirakawa, Y. & Sawa, S. Curr. Opin. Plant Biol. 51, 81–87 (2019).

    Article  CAS  Google Scholar 

  22. Funayama-Noguchi, S. et al. J. Plant Res. 124, 155–163 (2011).

    Article  CAS  Google Scholar 

  23. Handa, Y. et al. Plant Cell Physiol. 56, 1490–1511 (2015).

    Article  CAS  Google Scholar 

  24. Le Marquer, M., Bécard, G. & Frei dit Frey, N. New Phytol. 222, 1030–1042 (2019).

    Article  Google Scholar 

  25. Javot, H. et al. Proc. Natl Acad. Sci. USA 104, 1720–1725 (2007).

    Article  CAS  Google Scholar 

  26. Mortier, V. et al. Plant Physiol. 153, 222–237 (2010).

    Article  CAS  Google Scholar 

  27. Liao, P. et al. Biotechnol. Adv. 34, 697–713 (2016).

    Article  CAS  Google Scholar 

  28. van Zeijl, A. et al. BMC Plant Biol. 15, 260 (2015).

    Article  Google Scholar 

  29. Seto, Y. & Yamaguchi, S. Curr. Opin. Plant Biol. 21, 1–6 (2014).

    Article  CAS  Google Scholar 

  30. Gomez-Roldan, V. et al. Nature 455, 189–194 (2008).

    Article  CAS  Google Scholar 

  31. Tokunaga, T., Hayashi, H. & Akiyama, K. Phytochemistry 111, 91–97 (2015).

    Article  CAS  Google Scholar 

  32. Thuring, J. W. J. F., Nefkens, G. H. L. & Zwanenburg, B. J. Agric. Food Chem. 45, 2278–2283 (1997).

    Article  CAS  Google Scholar 

  33. Scaffidi, A. et al. Plant Physiol. 165, 1221–1232 (2014).

    Article  CAS  Google Scholar 

  34. Nimchuk, Z. L. et al. Development 142, 1043–1049 (2015).

    Article  CAS  Google Scholar 

  35. Schnabel, E. et al. Plant Mol. Biol. 58, 809–822 (2005).

    Article  Google Scholar 

  36. Foo, E., Ferguson, B. J. & Reid, J. B. Ann. Bot. 113, 1037–1045 (2014).

    Article  CAS  Google Scholar 

  37. Morandi, D. et al. Mycorrhiza 19, 435–441 (2009).

    Article  Google Scholar 

  38. López-Ráez, J. A. et al. J. Plant Physiol. 168, 294–297 (2011).

    Article  Google Scholar 

  39. Somssich, M. et al. Development 143, 3238–3248 (2016).

    Article  CAS  Google Scholar 

  40. Wang, G., Zhang, G. & Wu, M. Front Plant Sci. 6, 1211 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work we have not cited due to reference number constraints. We thank S. Roh and S. Cotraccia for technical assistance, K. Akiyama (Osaka Prefecture University, Osaka, Japan) for providing an authentic standard of medicaol and B. Zwanenburg (University of Nijmegen, Nijmegen, the Netherlands) for providing rac-GR24. Financial support for the project was provided by the US National Science Foundation grants IOS-1127155 and the US Department of Energy Office of Science, Office of Biological and Environmental Research (grant no. DE-SC0012460). L.M.M. was supported by postdoctoral fellowships from the Swiss National Science Foundation (Early Postdoc.Mobility) and the German Research Foundation (DFG). H.J.B. was supported by the European Research Council (ERC Advanced grant CHEMCOMRHIZO, 670211) and K.F. by the Netherlands Organisation for Scientific Research (NWO-ECHO grant 711.018.010).

Author information

Authors and Affiliations

Authors

Contributions

L.M.M. and M.J.H. conceived the experiments and analysed the data. E.S. and J.F. provided genome-level identification of CLE genes and sunn mutants. K.F. and H.J.B. analysed and interpreted strigolactone levels. X.S. and Z.F. processed the RNA sequencing data and generated differential expression data. L.M.M. carried out all other experiments. L.M.M. and M.J.H. wrote the manuscript.

Corresponding author

Correspondence to Maria J. Harrison.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks Caroline Gutjahr and other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Supplementary Methods, Supplementary Table 3 and Supplementary References.

Reporting Summary

Supplementary Table 1

Comparison of numbers of significantly differentially regulated genes.

Supplementary Table 2

Gene expression in 35S::MtCLE53 and 35S::GUS roots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, L.M., Flokova, K., Schnabel, E. et al. A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nat. Plants 5, 933–939 (2019). https://doi.org/10.1038/s41477-019-0501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0501-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing