Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Developmental mechanisms involved in the diversification of flowers

Abstract

We all appreciate the fantastic diversity of flowers. How flowers diversified, however, remains largely enigmatic. The mechanisms underlying the diversification of flowers are complex because the overall appearance of a flower is determined by many factors, such as the shape and size of its receptacle, and the arrangement, number, type, shape and colour of floral organs. Modifications of the developmental trajectories of a flower and its components, therefore, can lead to the generation of new floral types. In this Review, by summarizing the recent progress in studying the initiation, identity determination, morphogenesis and maturation of floral organs, we present our current understanding of the mechanisms underlying the diversification of flowers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Main developmental processes of floral organs and the effects of the changes occurring in each process on the diversification of flowers.

References

  1. 1.

    Chandler, J. W. Founder cell specification. Trends Plant Sci. 16, 607–613 (2011).

    CAS  PubMed  Google Scholar 

  2. 2.

    Chandler, J. W., Jacobs, B., Cole, M., Comelli, P. & Werr, W. DORNRÖSCHEN-LIKE expression marks Arabidopsis floral organ founder cells and precedes auxin response maxima. Plant Mol. Biol. 76, 171–185 (2011).

    CAS  PubMed  Google Scholar 

  3. 3.

    Cheng, Y., Dai, X. & Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20, 1790–1799 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Okada, K., Ueda, J., Komaki, M. K., Bell, C. J. & Shimura, Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Besnard, F. et al. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505, 417–421 (2014).

    CAS  PubMed  Google Scholar 

  6. 6.

    Chandler, J. W. & Werr, W. DORNRÖSCHEN, DORNRÖSCHEN-LIKE, and PUCHI redundantly control floral meristem identity and organ initiation in Arabidopsis. J. Exp. Bot. 68, 3457–3472 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. & Tasaka, M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J. L. & Meyerowitz, E. M. Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134, 1051–1060 (2007).

    CAS  PubMed  Google Scholar 

  9. 9.

    Wang, P. P. et al. Flexibility in the structure of spiral flowers and its underlying mechanisms. Nat. Plants 2, 15188 (2016).

    CAS  Google Scholar 

  10. 10.

    Becker, A. Tinkering with transcription factor networks for developmental robustness of Ranunculales flowers. Ann. Bot. 117, 845–858 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Damerval, C. & Nadot, S. Evolution of perianth and stamen characteristics with respect to floral symmetry in Ranunculales. Ann. Bot. 100, 631–640 (2007).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Causier, B. & Davies, B. Flower development in the asterid lineage. Methods Mol. Biol. 1110, 35–55 (2014).

    PubMed  Google Scholar 

  13. 13.

    Hirano, H.-Y., Tanaka, W. & Toriba, T. Grass flower development. Methods Mol. Biol. 1110, 57–84 (2014).

    PubMed  Google Scholar 

  14. 14.

    Prunet, N. & Jack, T. Flower development in Arabidopsis: there is more to it than learning your ABCs. Methods Mol. Biol. 1110, 3–34 (2014).

    PubMed  Google Scholar 

  15. 15.

    Schnablová, R., Herben, T. & Klimešová, J. Shoot apical meristem and plant body organization: a cross-species comparative study. Ann. Bot. 120, 833–843 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Laux, T., Mayer, K. F. X., Berger, J. & Jürgens, G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87–96 (1996).

    CAS  PubMed  Google Scholar 

  17. 17.

    Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644 (2000).

    CAS  PubMed  Google Scholar 

  18. 18.

    Sun, B. & Ito, T. Regulation of floral stem cell termination in Arabidopsis. Front. Plant Sci. 6, 17 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Coen, E. S. & Meyerowitz, E. M. The war of the whorls: genetic interactions controlling flower development. Nature 353, 31–37 (1991).

    CAS  PubMed  Google Scholar 

  20. 20.

    Morel, P. et al. Divergence of the floral A-function between an asterid and a rosid species. Plant Cell 29, 1605–1621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wu, F. et al. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses. Plant J. 89, 310–324 (2017).

    CAS  PubMed  Google Scholar 

  22. 22.

    Ye, L., Wang, B., Zhang, W., Shan, H. & Kong, H. Gains and losses of cis-regulatory elements led to divergence of the Arabidopsis APETALA1 and CAULIFLOWER duplicate genes in the time, space, and level of expression and regulation of one paralog by the other. Plant Physiol. 171, 1055–1069 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pabón-Mora, N., Ambrose, B. A. & Litt, A. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol. 158, 1685–1704 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Causier, B., Schwarz-Sommer, Z. & Davies, B. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 21, 73–79 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Theiβen, G., Melzer, R. & Rümpler, F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259–3271 (2016).

    Google Scholar 

  26. 26.

    Kanno, A. Molecular mechanism regulating floral architecture in monocotyledonous ornamental plants. Hort. J. 85, 8–22 (2016).

    CAS  Google Scholar 

  27. 27.

    Otani, M. et al. Suppression of B function strongly supports the modified ABCE model in Tricyrtis sp. (Liliaceae). Sci. Rep. 6, 24549 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zhang, R. et al. Disruption of the petal identity gene APETALA3–3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proc. Natl Acad. Sci. USA 110, 5074–5079 (2013).

    CAS  PubMed  Google Scholar 

  29. 29.

    Sharma, B. & Kramer, E. Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae). New Phytol. 197, 949–957 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    Hsu, H. F. et al. Model for perianth formation in orchids. Nat. Plants 1, 15046 (2015).

    CAS  Google Scholar 

  31. 31.

    Krizek, B. A., Lewis, M. W. & Fletcher, J. C. RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J. 45, 369–383 (2006).

    CAS  PubMed  Google Scholar 

  32. 32.

    Prunet, N., Yang, W. B., Das, P., Meyerowitz, E. M. & Jack, T. P. SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers. Proc. Natl Acad. Sci. USA 114, 7166–7171 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Yamaguchi, T. et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16, 500–509 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Ó’Maoiléidigh, D. S., Graciet, E. & Wellmer, F. Gene networks controlling Arabidopsis thaliana flower development. New Phytol. 201, 16–30 (2014).

    PubMed  Google Scholar 

  35. 35.

    Krogan, N. T., Hogan, K. & Long, J. A. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 139, 4180–4190 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Chanderbali, A. S. et al. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc. Natl Acad. Sci. USA 107, 22570–22575 (2010).

    CAS  PubMed  Google Scholar 

  37. 37.

    Buzgo, M., Soltis, P. S. & Soltis, D. E. Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 165, 925–947 (2004).

    Google Scholar 

  38. 38.

    Irish, V. F. The Arabidopsis petal: a model for plant organogenesis. Trends Plant Sci. 13, 430–436 (2008).

    CAS  PubMed  Google Scholar 

  39. 39.

    Moyroud, E. & Glover, B. J. The evolution of diverse floral morphologies. Curr. Biol. 27, R941–R951 (2017).

    CAS  PubMed  Google Scholar 

  40. 40.

    Sauret-Güeto, S., Schiessl, K., Bangham, A., Sablowski, R. & Coen, E. JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biol. 11, e1001550 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Walcher-Chevillet, C. L. & Kramer, E. M. Breaking the mold: understanding the evolution and development of lateral organs in diverse plant models. Curr. Opin. Genet. Dev. 39, 79–84 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Fox, S. et al. Spatiotemporal coordination of cell division and growth during organ morphogenesis. PLoS Biol. 16, e2005952 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Harashima, H. & Schnittger, A. The integration of cell division, growth and differentiation. Curr. Opin. Plant Biol. 13, 66–74 (2010).

    CAS  PubMed  Google Scholar 

  44. 44.

    Hong, L. et al. Heterogeneity and robustness in plant morphogenesis: from cells to organs. Annu. Rev. Plant Biol. 69, 469–495 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Jiao, Y. May the force be with you: overlooked mechanical signaling. Mol. Plant 12, 464–466 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Landrein, B. & Ingram, G. Connected through the force: mechanical signals in plant development. J. Exp. Bot. 70, 3507–3519 (2019).

    PubMed  Google Scholar 

  47. 47.

    Krizek, B. A. & Anderson, J. T. Control of flower size. J. Exp. Bot. 64, 1427–1437 (2013).

    CAS  PubMed  Google Scholar 

  48. 48.

    Hepworth, J. & Lenhard, M. Regulation of plant lateral-organ growth by modulating cell number and size. Curr. Opin. Plant Biol. 17, 36–42 (2014).

    PubMed  Google Scholar 

  49. 49.

    Huang, T. B. & Irish, V. F. Gene networks controlling petal organogenesis. J. Exp. Bot. 67, 61–68 (2016).

    PubMed  Google Scholar 

  50. 50.

    Cong, B., Liu, J. & Tanksley, S. D. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc. Natl Acad. Sci. USA 99, 13606–13611 (2002).

    CAS  PubMed  Google Scholar 

  51. 51.

    Frary, A. et al. fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000).

    CAS  PubMed  Google Scholar 

  52. 52.

    Nesbitt, T. C. & Tanksley, S. D. Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162, 365–379 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wang, L. et al. Regulatory change at Physalis Organ Size 1 correlates to natural variation in tomatillo reproductive organ size. Nat. Commun. 5, 4271 (2014).

    CAS  PubMed  Google Scholar 

  54. 54.

    Landis, J. B. et al. The phenotypic and genetic underpinnings of flower size in Polemoniaceae. Front. Plant Sci. 6, 1144 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Landis, J. B., Soltis, D. E. & Soltis, P. S. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae). BMC Genomics 18, 475 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Coen, E., Rolland-Lagan, A.-G., Matthews, M., Bangham, J. A. & Prusinkiewicz, P. The genetics of geometry. Proc. Natl Acad. Sci. USA 101, 4728–4735 (2004).

    CAS  PubMed  Google Scholar 

  57. 57.

    Li, X. et al. BIGGER ORGANS and ELEPHANT EAR-LIKE LEAF1 control organ size and floral organ internal asymmetry in pea. J. Exp. Bot. 70, 179–191 (2019).

    PubMed  Google Scholar 

  58. 58.

    Wang, Z. et al. Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc. Natl Acad. Sci. USA 105, 10414–10419 (2008).

    CAS  PubMed  Google Scholar 

  59. 59.

    Crawford, B. C., Nath, U., Carpenter, R. & Coen, E. S. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol. 135, 244–253 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Koyama, T., Ohme-Takagi, M. & Sato, F. Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana. Plant Signal. Behav. 6, 697–699 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Cullen, E., Fernández-Mazuecos, M. & Glover, B. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion. Ann. Bot. 122, 801–809 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Puzey, J. R., Gerbode, S. J., Hodges, S. A., Kramer, E. M. & Mahadevan, L. Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy. Proc. R. Soc. B 279, 1640–1645 (2012).

    PubMed  Google Scholar 

  63. 63.

    Box, M. S., Dodsworth, S., Rudall, P. J., Bateman, R. M. & Glover, B. J. Characterization of Linaria KNOX genes suggests a role in petal-spur development. Plant J. 68, 703–714 (2011).

    CAS  PubMed  Google Scholar 

  64. 64.

    Golz, J. F., Keck, E. J. & Hudson, A. Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Curr. Biol. 12, 515–522 (2002).

    CAS  PubMed  Google Scholar 

  65. 65.

    Fukushima, K. & Hasebe, M. Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 52, 1–18 (2014).

    PubMed  Google Scholar 

  66. 66.

    Sessions, A. et al. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124, 4481–4491 (1997).

    CAS  PubMed  Google Scholar 

  67. 67.

    Toriba, T. et al. Distinct regulation of adaxial-abaxial polarity in anther patterning in rice. Plant Cell 22, 1452–1462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Yao, X. et al. The making of elaborate petals in Nigella through developmental repatterning. New Phytol. 223, 385–396 (2019).

    PubMed  Google Scholar 

  69. 69.

    Boualem, A. et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350, 688–691 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Che, G. & Zhang, X. Molecular basis of cucumber fruit domestication. Curr. Opin. Plant Biol. 47, 38–46 (2019).

    CAS  PubMed  Google Scholar 

  71. 71.

    Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014).

    CAS  PubMed  Google Scholar 

  72. 72.

    Harkess, A. et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 8, 1279 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Preston, J. C. & Hileman, L. C. Developmental genetics of floral symmetry evolution. Trends Plant Sci. 14, 147–154 (2009).

    CAS  PubMed  Google Scholar 

  74. 74.

    Hileman, L. C. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Phil. Trans. R. Soc. B 369, 20130348 (2014).

    PubMed  Google Scholar 

  75. 75.

    Borghi, M., Fernie, A. R., Schiestl, F. P. & Bouwmeester, H. J. The sexual advantage of looking, smelling, and tasting good: the metabolic network that produces signals for pollinators. Trends Plant Sci. 22, 338–350 (2017).

    CAS  PubMed  Google Scholar 

  76. 76.

    Sobel, J. M. & Streisfeld, M. A. Flower color as a model system for studies of plant evo-devo. Front. Plant Sci. 4, 321 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Jiang, P. & Rausher, M. Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia. Nat. Plants 4, 14–22 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Bradley, D. et al. Evolution of flower color pattern through selection on regulatory small RNAs. Science 358, 925–928 (2017).

    CAS  PubMed  Google Scholar 

  79. 79.

    Tavares, H. et al. Selection and gene flow shape genomic islands that control floral guides. Proc. Natl Acad. Sci. USA 115, 11006–11011 (2018).

    CAS  PubMed  Google Scholar 

  80. 80.

    Su, S. H. et al. The CYCLOIDEA–RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytol. 215, 1582–1593 (2017).

    CAS  PubMed  Google Scholar 

  81. 81.

    Vignolini, S. et al. The flower of Hibiscus trionum is both visibly and measurably iridescent. New Phytol. 205, 97–101 (2015).

    PubMed  Google Scholar 

  82. 82.

    Moyroud, E. et al. Disorder in convergent floral nanostructures enhances signalling to bees. Nature 550, 469–474 (2017).

    CAS  PubMed  Google Scholar 

  83. 83.

    Airoldi, C. A., Ferria, J. & Glover, B. J. The cellular and genetic basis of structural colour in plants. Curr. Opin. Plant Biol. 47, 81–87 (2019).

    CAS  PubMed  Google Scholar 

  84. 84.

    Muhlemann, J. K., Klempien, A. & Dudareva, N. Floral volatiles: from biosynthesis to function. Plant Cell Environ. 37, 1936–1949 (2014).

    PubMed  Google Scholar 

  85. 85.

    Amrad, A. et al. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr. Biol. 26, 3303–3312 (2016).

    CAS  PubMed  Google Scholar 

  86. 86.

    Sas, C. et al. Repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in Capsella. Curr. Biol. 26, 3313–3319 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Borghi, M. & Fernie, A. R. Floral metabolism of sugars and amino acids: implications for pollinators’ preferences and seed and fruit set. Plant Physiol. 175, 1510–1524 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Mlcek, J. & Rop, O. Fresh edible flowers of ornamental plants – a new source of nutraceutical foods. Trends Food Sci. Technol. 22, 561–569 (2011).

    CAS  Google Scholar 

  89. 89.

    Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C. & Methven, L. Taste and flavor perceptions of glucosinolates, isothiocyanates, and related compounds. Mol. Nutr. Food Res. 62, 1700990 (2018).

    Google Scholar 

  90. 90.

    Champagne, A. & Boutry, M. A comprehensive proteome map of glandular trichomes of hop (Humulus lupulus L.) female cones: identification of biosynthetic pathways of the major terpenoid-related compounds and possible transport proteins. Proteomics 17, 1600411 (2017).

    Google Scholar 

  91. 91.

    Cuong, D. M. et al. Identification and characterization of phenylpropanoid biosynthetic genes and their accumulation in bitter melon (Momordica charantia). Molecules 23, 469 (2018).

    PubMed Central  Google Scholar 

  92. 92.

    Smith, S. D. Pleiotropy and the evolution of floral integration. New Phytol. 209, 80–85 (2016).

    CAS  PubMed  Google Scholar 

  93. 93.

    Endress, P. K. & Doyle, J. A. Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64, 1093–1116 (2015).

    Google Scholar 

  94. 94.

    Endress, P. K. & Matthews, M. L. Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Org. Divers. Evol. 6, 257–293 (2006).

    Google Scholar 

  95. 95.

    Li, L. et al. Interactions among proteins of floral MADS-box genes in Nuphar pumila (Nymphaeaceae) and the most recent common ancestor of extant angiosperms help understand the underlying mechanisms of the origin of the flower. J. Syst. Evol. 53, 285–296 (2015).

    Google Scholar 

  96. 96.

    Moyroud, E. et al. A link between LEAFY and B‐gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytol. 216, 469–481 (2017).

    CAS  PubMed  Google Scholar 

  97. 97.

    Liu, C. et al. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Mol. Biol. Evol. 27, 1598–1611 (2010).

    CAS  PubMed  Google Scholar 

  98. 98.

    Rebocho, A. B., Kennaway, J. R., Bangham, J. A. & Coen, E. Formation and shaping of the Antirrhinum flower through modulation of the CUP boundary gene. Curr. Biol. 27, 1–13 (2017).

    Google Scholar 

  99. 99.

    Rebocho, A. B., Southam, P., Kennaway, J. R., Bangham, J. A. & Coen, E. Generation of shape complexity through tissue conflict resolution. eLife 6, e20156 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.K. wishes to thank support from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB27010304), the National Natural Science Foundation of China grants (grant nos. 31330007 and 91631308), the CAS/SAFEA International Partnership Program for Creative Research Teams and the National Ten-Thousand Talents Program of China.

Author information

Affiliations

Authors

Contributions

H.K. designed the outline of the manuscript. H.S. and J.C. wrote the manuscript. H.S., R.Z., X.Y. and H.K. polished the article.

Corresponding author

Correspondence to Hongzhi Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shan, H., Cheng, J., Zhang, R. et al. Developmental mechanisms involved in the diversification of flowers. Nat. Plants 5, 917–923 (2019). https://doi.org/10.1038/s41477-019-0498-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing