Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two Y-chromosome-encoded genes determine sex in kiwifruit


Dioecy, the presence of male and female individuals, has evolved independently in multiple flowering plant lineages1,2,3. Although theoretical models for the evolution of dioecy, such as the ‘two-mutations’ model, are well established4,5, little is known about the specific genes determining sex and their evolutionary history3. Kiwifruit, a major tree crop consumed worldwide, is a dioecious species. In kiwifruit we previously identified a Y-encoded sex-determinant candidate gene acting as the suppressor of feminization (SuF), named Shy Girl (SyGI)6. Here, we identify a second Y-encoded sex-determinant that we named Friendly Boy (FrBy), which exhibits strong expression in tapetal cells. Gene-editing and complementation analyses in Arabidopsis thaliana and Nicotiana tabacum indicated that FrBy acts for the maintenance of male (M) functions, independently of SyGI, and that these functions are conserved across angiosperm species. We further characterized the genomic architecture of the small (<1 megabase pairs (Mb)) male-specific region of the Y chromosome (MSY), which harbours only two genes expressed extensively in developing gynoecia and androecia, respectively: SyGI and FrBy. Re-sequencing of the genome of a natural hermaphrodite kiwifruit revealed that this individual is genetically male but carries deletion(s) of parts of the Y chromosome, including SyGI. Additionally, expression of FrBy in female kiwifruit resulted in hermaphrodite plants. These results clearly indicate that Y-encoded SyGI and FrBy act independently as the SuF and M factors in kiwifruit, respectively, and provide insight into not only the evolutionary path leading to a two-factor sex-determination system, but also a new breeding approach for dioecious species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Identification of the fasciclin-like FrBy as the candidate of the M factor.
Fig. 2: Functional validation of FrBy in two model plants.
Fig. 3: Sequence architecture of the kiwifruit Y chromosome, including the two sex determinants.
Fig. 4: Loss of SyGI, or gain of FrBy, resulted in a natural and synthetic hermaphrodite kiwifruit, respectively.
Fig. 5: Evolutionary model for the establishment of dioecy in Actinidia.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. All sequence data generated in the context of this manuscript have been deposited in the appropriate DNA Database of Japan: Illumina reads for gDNA-seq and mRNA-seq in the Short Read Archives (SRA) database (SRA Submission ID: DRA008474, Run IDs: DRR180225–180236), and the genomic contig sets constructed with 10X Genomics reads were submitted to Genbank (IDs LC482704–482713).


  1. 1.

    Ming, R., Bendahmane, A. & Renner, S. S. Sex chromosomes in land plants. Ann. Rev. Plant Biol. 62, 485–514 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Renner, S. S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588–1596 (2014).

    Article  Google Scholar 

  3. 3.

    Henry, I. M., Akagi, T., Tao, R. & Comai, L. One hundred ways to invent the sexes: theoretical and observed paths to dioecy in plants. Annu. Rev. Plant Biol. 69, 553–575 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Westergaard, M. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9, 217–281 (1958).

    CAS  Article  Google Scholar 

  5. 5.

    Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997 (1978).

    Article  Google Scholar 

  6. 6.

    Akagi, T. et al. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell 30, 780–795 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Charlesworth, D. Plant sex chromosome evolution. J. Exp. Bot. 64, 405–420 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Charlesworth, D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 208, 52–65 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Kazama, Y. et al. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 6, 18917 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Liu, Z. et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427, 348–352 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    Wang, J. et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl Acad. Sci. USA 109, 13710–13715 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Harkess, A. et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 8, 1279 (2017).

    Article  Google Scholar 

  14. 14.

    Akagi, T. et al. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. Plant Cell 28, 2905–2915 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Datson, P. M. & Ferguson, A. R. Wild Crop Relatives: Genomic and Breeding Resources. Tropical and Subtropical Fruits (ed. Kole, C.) 1–20 (Springer, 2011).

  16. 16.

    Fraser, L. G. et al. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genom. 10, 102 (2009).

    Article  Google Scholar 

  17. 17.

    Zhang, Q. et al. High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers. DNA Res. 22, 367–375 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Messina, R. Microsporogenesis in male-fertile cv. Matua and male-sterile cv. Hayward of Actinidia deliciosa var. deliciosa (Kiwifruit). Adv. Hort. Sci. 7, 77–81 (1993).

    Google Scholar 

  19. 19.

    Falasca, G. et al. Tapetum and middle layer control male fertility in Actinidia deliciosa. Ann. Bot. 112, 1045–1055 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Tan, H., Liang, W., Hu, J. & Zhang, D. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Dev. Cell 22, 1127–1137 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Pilkington, S. M. et al. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genom. 19, 257 (2018).

    Article  Google Scholar 

  22. 22.

    Zhang, D. & Yang, L. Specification of tapetum and microsporocyte cells within the anther. Curr. Opin. Plant Biol. 17, 49–55 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Ye, J. et al. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Plant J. 84, 527–544 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Ye, J. et al. Abundant protein phosphorylation potentially regulates Arabidopsis anther development. J. Exp. Bot. 67, 4993–5008 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Tsugama, D. et al. A putative MYB35 ortholog is a candidate for the sex-determining genes in Asparagus officinalis. Sci. Rep. 7, 41497 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Murase, K. et al. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22, 115–123 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Huang, S. et al. Draft genome of the kiwifruit Actinidia chinensis. Nat. Comm. 4, 2640 (2013).

    Article  Google Scholar 

  28. 28.

    Weisenfeld, N. I. et al. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Ben-Dor, A., Chor, B. & Pelleg, D. RHO - radiation hybrid ordering. Genome Res. 10, 365–378 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    Schäffer, A. A., Rice, E. S., Cook, W. & Agarwala, R. rh_tsp_map 3.0: end-to-end radiation hybrid mapping with improved speed and quality control. Bioinformatics 23, 1156–1158 (2007).

    Article  Google Scholar 

  31. 31.

    Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).

    Article  Google Scholar 

  32. 32.

    Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32, 309–312 (2004).

    Article  Google Scholar 

  33. 33.

    McNeilage, M. A. & Steinhagen, S. Flower and fruit characters in a kiwifruit hermaphrodite. Euphytica 101, 69–72 (1998).

    Article  Google Scholar 

  34. 34.

    Varkonyi-Gasic, E. et al. Mutagenesis of kiwifruit CENTRORADIALIS‐like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotech. J. 17, 869–880 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Mayer, S. S. & Charlesworth, D. Cryptic dioecy in flowering plants. Trends Ecol. Evol. 6, 320–325 (1991).

    CAS  Article  Google Scholar 

  36. 36.

    Torres, M. et al. Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. Nat. Comm. 9, 3969 (2018).

    Article  Google Scholar 

  37. 37.

    Yang, H.-W., Akagi, T., Kawakatsu, T. & Tao, R. Gene networks orchestrated by MeGI: a single‐factor mechanism underlying sex determination in persimmon. Plant J. 98, 97–111 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  40. 40.

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143 (2003).

    Article  Google Scholar 

  42. 42.

    Tamura, K. et al. MEGA5: molecular evolution genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  Google Scholar 

  46. 46.

    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotech. 29, 24–26 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Tsutsui, H. & Higashiyama, T. pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol. 58, 46–56 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Voogd, C., Wang, T. & Varkonyi-Gasic, E. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. J. Exp. Bot. 66, 4699–4710 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    Wang, T. et al. Transformation of Actinidia eriantha: a potential species for functional genomics studies in Actinidia. Plant Cell Rep. 25, 425 (2006).

    CAS  Article  Google Scholar 

Download references


We thank L. Comai (UC Davis Department Plant Biology and Genome Center) for technical advice and bioinformatics support; Y. Kazama and K. Ishii (Riken Institute) for technical support in using the DelMapper programme; and N. Nieuwenhuizen and J. (L.) Zhang (Plant and Food Research) for vector construction. The KE population was originally provided by Kagawa Prefectural Agricultural Experiment Station. Some of this work was performed at the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH Instrumentation (grant No. S10 OD018174). This work was supported by PRESTO (grant Nos. JPMJPR15Q1 (to T.A.) and JPMJPR15Q6 (to S.S.S.)) from the Japan Science and Technology Agency (JST), by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 19H04862 to T.A.) from JSPS and by the National Science Foundation (NSF) IOS award (grant No. 1457230 to I.M.H.).

Author information




T.A., I.K. and R.T. conceived the study. T.A. designed the experiments. T.A., S.M.P., E.V.-G., S.S.S., M.S., A.F., M.J.D., T.W., R.R. and C.V. conducted the experiments. T.A., S.M.P., E.V.-G., S.S.S., M.S., I.M.H. and A.F. analysed the data. S.M.P., M.A.M., P.D., A.C.A., K.B. and I.K. initiated/bred and maintained the plant materials. T.A., S.M.P., E.V. and I.M.H. drafted the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Takashi Akagi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks Roberta Bergero, Susanne Renner and Qi Zhou for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–14 and Supplementary Tables 1–12.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akagi, T., Pilkington, S.M., Varkonyi-Gasic, E. et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 5, 801–809 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing