Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization

Abstract

The non-random three-dimensional (3D) organization of the genome in the nucleus is critical to gene regulation and genome function. Using high-throughput chromatin conformation capture, we generated chromatin interaction maps for Brassica rapa and Brassica oleracea at a high resolution and characterized the conservation and divergence of chromatin organization in these two species. Large-scale chromatin structures, including A/B compartments and topologically associating domains, are notably conserved between B. rapa and B. oleracea, yet their KNOT structures are highly divergent. We found that genes retained in less fractionated subgenomes exhibited stronger interaction strengths, and diploidization-resistant duplicates retained in pairs or triplets are more likely to be colocalized in both B. rapa and B. oleracea. These observations suggest that spatial constraint in duplicated genes is correlated to their biased retention in the diploidization process. In addition, we found strong similarities in the epigenetic modification and Gene Ontology terms of colocalized paralogues, which were largely conserved across B. rapa and B. oleracea, indicating functional constraints on their 3D positioning in the nucleus. This study presents an investigation of the spatial organization of genomes in Brassica and provides insights on the role of 3D organization in the genome evolution of this genus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global patterns of chromatin in Hi-C contact maps.
Fig. 2: Chromosomal landscape of genomic features and chromatin modifications.
Fig. 3: TAD profiles in B. rapa and B. oleracea.
Fig. 4: Evolutionary conservation of compartment status and TAD boundaries across B. rapa and B. oleracea.
Fig. 5: Comparison of interaction levels across the three subgenomes.
Fig. 6: Colocalization frequency of interchromosomal paralogues retained after WGT and comparison of histone modification and DNA methylation levels and GO patterns between colocalized and non-colocalized paralogues.

Similar content being viewed by others

Data availability

All sequencing data generated for this study have been submitted to the NCBI Sequence Read Archive under accession number PRJNA521833.

Code availability

The script used to generate the distance-normalized O/E matrix is available in the Supplementary Information.

References

  1. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davies, J. O., Oudelaar, A. M., Higgs, D. R. & Hughes, J. R. How best to identify chromosomal interactions: a comparison of approaches. Nat. Methods 14, 125–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Schmitt, A. D., Hu, M. & Ren, B. Genome-wide mapping and analysis of chromosome architecture. Nat. Rev. Mol. Cell Biol. 17, 743–755 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dogan, E. S. & Liu, C. Three-dimensional chromatin packing and positioning of plant genomes. Nat. Plants 4, 521–529 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Sotelo-Silveira, M., Chavez Montes, R. A., Sotelo-Silveira, J. R., Marsch-Martinez, N. & de Folter, S. Entering the next dimension: plant genomes in 3D. Trends Plant Sci. 23, 598–612 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Grob, S. & Grossniklaus, U. Chromosome conformation capture-based studies reveal novel features of plant nuclear architecture. Curr. Opin. Plant Biol. 36, 149–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Moissiard, G. et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336, 1448–1451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Feng, S. et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, C. et al. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26, 1057–1068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, C. et al. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 25, 246–256 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grob, S., Schmid, M. W., Luedtke, N. W., Wicker, T. & Grossniklaus, U. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol. 14, R129 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu, C., Cheng, Y. J., Wang, J. W. & Weigel, D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants 3, 742–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, M. et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants 4, 90–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Dong, Q. et al. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J. 94, 1141–1156 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Lysak, M. A., Koch, M. A., Pecinka, A. & Schubert, I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 15, 516–525 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Town, C. D. et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Parkin, I. A. et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 15, R77 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu, S. et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 5, 3930 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Salse, J. In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. Curr. Opin. Plant Biol. 15, 122–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Murat, F. et al. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 16, 262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang, H. et al. Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190, 1563–1574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng, F. et al. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7, e36442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng, F. et al. Genome sequencing supports a multi-vertex model for Brassiceae species. Curr. Opin. Plant Biol. 36, 79–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Flagel, L. E. & Wendel, J. F. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol. 186, 184–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Woodhouse, M. R. et al. Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol. 8, e1000409 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Papp, B., Pal, C. & Hurst, L. D. Dosage sensitivity and the evolution of gene families in yeast. Nature 424, 194–197 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Freeling, M. & Thomas, B. C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res. 16, 805–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Edger, P. P. & Pires, J. C. Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res. 17, 699–717 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Cheng, F., Wu, J. & Wang, X. Genome triplication drove the diversification of Brassica plants. Hortic. Res. 1, 14024 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xie, T. et al. De novo plant genome assembly based on chromatin interactions: a case study of Arabidopsis thaliana. Mol. Plant 8, 489–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, L. et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic. Res. 5, 50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tiang, C. L., He, Y. & Pawlowski, W. P. Chromosome organization and dynamics during interphase, mitosis and meiosis in plants. Plant Physiol. 158, 26–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Lim, K. B. et al. Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol. Cell 19, 436–444 (2005).

    CAS  Google Scholar 

  41. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Gibcus, J. H. & Dekker, J. The hierarchy of the 3D genome. Mol. Cell 49, 773–782 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xie, T. et al. Spatial features for Escherichia coli genome organization. BMC Genom. 16, 37 (2015).

    Article  Google Scholar 

  48. Dai, Z., Xiong, Y. & Dai, X. Neighboring genes show interchromosomal colocalization after their separation. Mol. Biol. Evol. 31, 1166–1172 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Thevenin, A., Ein-Dor, L., Ozery-Flato, M. & Shamir, R. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome. Nucleic Acids Res. 42, 9854–9861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie, T., Yang, Q. Y., Wang, X. T., McLysaght, A. & Zhang, H. Y. Spatial colocalization of human ohnolog pairs acts to maintain dosage-balance. Mol. Biol. Evol. 33, 2368–2375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shao, Y. et al. Creating a functional single-chromosome yeast. Nature 560, 331–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Ovaska, K., Laakso, M. & Hautaniemi, S. Fast gene ontology based clustering for microarray experiments. BioData Min. 1, 11 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu, W. et al. Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol. 18, 157 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Le, T. B., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43, 1059–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Lajoie, B. R., Dekker, J. & Kaplan, N. The Hitchhiker’s guide to Hi-C analysis: practical guidelines. Methods 72, 65–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, X. T. RunHiC: a user-friendly Hi-C data processing software based on hiclib (Zenodo, 2016); https://doi.org/10.5281/zenodo.55324

  60. Wolff, J. et al. Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 46, W11–W16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramirez, F. et al. High-affinity sites form an interaction network to facilitate spreading of the MSL complex across the X chromosome in Drosophila. Mol. Cell 60, 146–162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, X. T., Cui, W. & Peng, C. HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions. Nucleic Acids Res. 45, e163 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hofmeister, B. T., Lee, K., Rohr, N. A., Hall, D. W. & Schmitz, R. J. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 18, 155 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shen, Y. et al. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 19, 128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Van Bel, M. et al. PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res. 46, D1190–D1196 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical assistance of Igenebook (Wuhan) for ChIP-seq library construction. This work was funded by the National Natural Science Foundation of China (grant no. 31801052), the National Key Program for Research and Development (grant no. 2016YFD0100202), the National Natural Science Foundation of China (grant no. 31670779), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (grant no. CAAS-ASTIP-2015-OCRI) and the Fundamental Research Funds for Central Non-profit Scientific Institution (grant no. 1610172018011).

Author information

Authors and Affiliations

Authors

Contributions

T.X. and H.-Y.Z. conceived and designed the research. F.-G.Z., X.-M.W. and J.-H.H. prepared the DNA samples and performed the experiments. T.X., X.-T.W. and J.-H.H analysed the data. T.X. wrote the manuscript with input from H.-Y.Z., F.-G.Z. and X.-T.W.

Corresponding author

Correspondence to Ting Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks Chang Liu, Martin Mascher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Tables 1–3, and Supplementary Tables 7 and 8.

Reporting Summary

cal_obs_exp.py

A custom script for the distance-normalized matrix calculation in this study.

Supplementary Table 4

A/B compartments identified in B. rapa and B. oleracea.

Supplementary Table 5

TADs identified in B. rapa and B. oleracea.

Supplementary Table 6

Interaction scores and expression levels of the paralogues retained from WGT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Zhang, FG., Zhang, HY. et al. Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. Nat. Plants 5, 822–832 (2019). https://doi.org/10.1038/s41477-019-0479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0479-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing