The biosynthetic origin of psychoactive kavalactones in kava

Abstract

Kava (Piper methysticum) is an ethnomedicinal shrub native to the Polynesian islands with well-established anxiolytic and analgesic properties. Its main psychoactive principles, kavalactones, form a unique class of polyketides that interact with the human central nervous system through mechanisms distinct from those of conventional psychiatric drugs. However, an unknown biosynthetic machinery and difficulty in chemical synthesis hinder the therapeutic use of kavalactones. In addition, kava also produces flavokavains, which are chalconoids with anticancer properties structurally related to kavalactones. Here, we report de novo elucidation of the key enzymes of the kavalactone and flavokavain biosynthetic network. We present the structural basis for the evolutionary development of a pair of paralogous styrylpyrone synthases that establish the kavalactone scaffold and the catalytic mechanism of a regio- and stereo-specific kavalactone reductase that produces a subset of chiral kavalactones. We further demonstrate the feasibility of engineering styrylpyrone production in heterologous hosts, thus opening a way to develop kavalactone-based non-addictive psychiatric therapeutics through synthetic biology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chemotypes of select Piper species and the bifurcation of kavalactone and flavokavain biosynthesis from common hydroxycinnamoyl-CoA precursors in kava.
Fig. 2: Mechanistic basis for the neofunctionalization of SPSs from ancestral CHS in kava.
Fig. 3: Functional characterization of kava OMTs.
Fig. 4: Functional characterization of PmKLR1.
Fig. 5: Functional characterization of the methylenedioxy-bridge-forming enzyme PmCYP719A26 (PmMTS1).
Fig. 6: The proposed kavalactone-biosynthetic network derived from phenylalanine.

Data availability

The sequences of the genes reported in this article have been deposited in NCBI GenBank (accessions MK058492MK058514). Protein expression plasmids are available from Addgene (see Supplementary Table 5). The raw sequencing reads have been submitted to NCBI SRA (accession PRJNA494686) and the de novo assembled transcriptome to NCBI TSA (accession GHAC00000000). Raw metabolomic LC–MS datasets have been uploaded to the GNPS-MassIVE database (accessions MSV000083272 and MSV000083274MSV000083277). Protein structures have been deposited in Protein Data Bank (accessions 6OP5, 6CQB and 6NBR).

References

  1. 1.

    Li, F.-S. & Weng, J.-K. Demystifying traditional herbal medicine with modern approach. Nat. Plants 3, 17109 (2017).

  2. 2.

    Parmar, V. S. et al. Phytochemistry of the genus Piper. Phytochemistry 46, 597–673 (1997).

  3. 3.

    Mehmood, M. H. & Gilani, A. H. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. J. Med. Food 13, 1086–1096 (2010).

  4. 4.

    Bharadwaj, U. et al. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene 34, 1341–1353 (2015).

  5. 5.

    Raj, L. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231–234 (2011).

  6. 6.

    Chu, N. S. Effects of betel chewing on the central and autonomic nervous systems. J. Biomed. Sci. 8, 229–236 (2001).

  7. 7.

    Amonkar, A. J., Nagabhushan, M., D’Souza, A. V. & Bhide, S. V. Hydroxychavicol: a new phenolic antimutagen from betel leaf. Food Chem. Toxicol. 24, 1321–1324 (1986).

  8. 8.

    Jaramillo, M. A. & Manos, P. S. Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). Am. J. Bot. 88, 706–716 (2001).

  9. 9.

    Lebot, V. & Lèvesque, J. The origin and distribution of kava (Piper methysticum Forst. f., Piperaceae): a phytochemical approach. Allertonia 5, 223–281 (1989).

  10. 10.

    Singh, Y. N. Kava: an overview. J. Ethnopharmacol. 37, 13–45 (1992).

  11. 11.

    Cairney, S., Maruff, P. & Clough, A. R. The neurobehavioural effects of kava. Aust. N. Z. J. Psychiatry 36, 657–662 (2002).

  12. 12.

    Sarris, J., LaPorte, E. & Schweitzer, I. Kava: a comprehensive review of efficacy, safety, and psychopharmacology. Aust. N. Z. J. Psychiatry 45, 27–35 (2011).

  13. 13.

    Lasme, P., Davrieux, F., Montet, D. & Lebot, V. Quantification of kavalactones and determination of kava (Piper methysticum) chemotypes using near-infrared reflectance spectroscopy for quality control in vanuatu. J. Agric. Food Chem. 56, 4976–4981 (2008).

  14. 14.

    Kava: A Review of the Safety of Traditional and Recreational Beverage Consumption (World Health Organization, 2016).

  15. 15.

    Montague, Z. Stressed New Yorkers Take to Kava, ‘Nature’s Xanax’. The New York Times (21 July 2018); https://www.nytimes.com/2017/12/21/nyregion/stressed-new-yorkers-take-to-kava-natures-xanax.html

  16. 16.

    Seifert, K. Kava: The NFL’s newest and safest painkiller. ESPN (21 July 2018); http://www.espn.com/blog/nflnation/post/_/id/256632

  17. 17.

    Chua, H. C. et al. Kavain, the major constituent of the anxiolytic kava extract, potentiates GABAA receptors: functional characteristics and molecular mechanism. PLoS ONE 11, e0157700 (2016).

  18. 18.

    Jamieson, D. D. & Duffield, P. H. The antinociceptive actions of kava components in mice. Clin. Exp. Pharmacol. Physiol. 17, 495–507 (1990).

  19. 19.

    Zi, X. & Simoneau, A. R. Flavokawain A, a novel chalcone from kava extract, induces apoptosis in bladder cancer cells by involvement of Bax protein-dependent and mitochondria-dependent apoptotic pathway and suppresses tumor growth in mice. Cancer Res. 65, 3479–3486 (2005).

  20. 20.

    Zhou, P. et al. Flavokawain B, the hepatotoxic constituent from kava root, induces GSH-sensitive oxidative stress through modulation of IKK/NF-kappaB and MAPK signaling pathways. FASEB J. 24, 4722–4732 (2010).

  21. 21.

    Abe, I. & Morita, H. Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat. Prod. Rep. 27, 809–838 (2010).

  22. 22.

    Lebot, V., Aradhya, M. K. & Manshardt, R. M. Geographic survey of genetic variation in kava (Piper methysticum Forst. f. and P. wichmannii C. DC.). Pac. Sci. 45, 169–185 (1991).

  23. 23.

    Torrens-Spence, M. P., Fallon, T. R. & Weng, J. K. A workflow for studying specialized metabolism in nonmodel eukaryotic organisms. Methods Enzymol. 576, 69–97 (2016).

  24. 24.

    Owen, C., Patron, N. J., Huang, A. & Osbourn, A. Harnessing plant metabolic diversity. Curr. Opin. Chem. Biol. 40, 24–30 (2017).

  25. 25.

    Tatsis, E. C. & O’Connor, S. E. New developments in engineering plant metabolic pathways. Curr. Opin. Biotechnol. 42, 126–132 (2016).

  26. 26.

    Akiyama, T., Shibuya, M., Liu, H. M. & Ebizuka, Y. p‐Coumaroyltriacetic acid synthase, a new homologue of chalcone synthase, from Hydrangea macrophylla var. thunbergii. FEBS J. 263, 834–839 (1999).

  27. 27.

    Abe, I., Sano, Y., Takahashi, Y. & Noguchi, H. Site-directed mutagenesis of benzalacetone synthase: the role of PHE215 in plant type III polyketide synthases. J. Biol. Chem. 278, 25218–25226 (2003).

  28. 28.

    Burbulis, I. E., Iacobucci, M. & Shirley, B. W. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8, 1013–1025 (1996).

  29. 29.

    Sainsbury, F. & Lomonossoff, G. P. Transient expressions of synthetic biology in plants. Curr. Opin. Plant Biol. 19, 1–7 (2014).

  30. 30.

    Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).

  31. 31.

    Jez, J. M. et al. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 7, 919–930 (2000).

  32. 32.

    Morita, H. et al. A structure-based mechanism for benzalacetone synthase from Rheum palmatum. Proc. Natl Acad. Sci. USA 107, 669–673 (2010).

  33. 33.

    Austin, M. B. & Noel, J. P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

  34. 34.

    Moinuddin, S. G. A. et al. Insights into lignin primary structure and deconstruction from Arabidopsis thaliana COMT (caffeic acid O-methyl transferase) mutant Atomt1. Org. Biomol. Chem. 8, 3928–3946 (2010).

  35. 35.

    Eckermann, C. et al. Stilbenecarboxylate biosynthesis: a new function in the family of chalcone synthase-related proteins. Phytochemistry 62, 271–286 (2003).

  36. 36.

    Gosch, C., Halbwirth, H. & Stich, K. Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71, 838–843 (2010).

  37. 37.

    Narváez-Cuenca, C.-E., Vincken, J.-P. & Gruppen, H. Identification and quantification of (dihydro) hydroxycinnamic acids and their conjugates in potato by UHPLC–DAD–ESI-MSn. Food Chem. 130, 730–738 (2012).

  38. 38.

    Harbaum, B. et al. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC–ESI-MSn and NMR and their quantification by HPLC–DAD. J. Agric. Food Chem. 55, 8251–8260 (2007).

  39. 39.

    Li, Y. et al. Methysticin and 7,8-dihydromethysticin are two major kavalactones in kava extract to induce CYP1A1. Toxicol. Sci. 124, 388–399 (2011).

  40. 40.

    Ikezawa, N. et al. Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells. J. Biol. Chem. 278, 38557–38565 (2003).

  41. 41.

    Lau, W. & Sattely, E. S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349, 1224–1228 (2015).

  42. 42.

    Chemler, J. A. & Koffas, M. A. G. Metabolic engineering for plant natural product biosynthesis in microbes. Curr. Opin. Biotechnol. 19, 597–605 (2008).

  43. 43.

    Beckert, C. et al. Styrylpyrone biosynthesis in Equisetum arvense. Phytochemistry 44, 275–283 (1997).

  44. 44.

    Anarat-Cappillino, G. & Sattely, E. S. The chemical logic of plant natural product biosynthesis. Curr. Opin. Plant Biol. 19, 51–58 (2014).

  45. 45.

    Weng, J.-K. & Noel, J. P. The remarkable pliability and promiscuity of specialized metabolism. Cold Spring Harb. Symp. Quant. Biol. 77, 309–320 (2012).

  46. 46.

    Weng, J.-K., Philippe, R. N. & Noel, J. P. The rise of chemodiversity in plants. Science 336, 1667–1670 (2012).

  47. 47.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  48. 48.

    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

  49. 49.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

  50. 50.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

  51. 51.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

  52. 52.

    Priyam, A. et al. Sequenceserver: a modern graphical user interface for custom BLAST databases. Preprint at https://www.biorxiv.org/content/10.1101/033142v1 (2015).

  53. 53.

    Xiao, M. et al. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 166, 122–134 (2013).

  54. 54.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  55. 55.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

  56. 56.

    Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992).

  57. 57.

    Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).

  58. 58.

    Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

  59. 59.

    Tropea, J. E., Cherry, S. & Waugh, D. S. Expression and purification of soluble His(6)-tagged TEV protease. Methods Mol. Biol. 498, 297–307 (2009).

  60. 60.

    Viola, R. E., Cook, P. F. & Cleland, W. W. Stereoselective preparation of deuterated reduced nicotinamide adenine nucleotides and substrates by enzymatic synthesis. Anal. Biochem. 96, 334–340 (1979).

  61. 61.

    Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

  62. 62.

    Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

  63. 63.

    Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

  64. 64.

    Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 11, 395 (2010).

  65. 65.

    Xia, J., Sinelnikov, I. V., Han, B. & Wishart, D. S. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 43, W251–W257 (2015).

  66. 66.

    Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl Acad. Sci. USA 112, 12580–12585 (2015).

  67. 67.

    Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

  68. 68.

    Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. /it iMOSFLM: a new graphical interface for diffraction-image processing with /it MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).

  69. 69.

    Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).

  70. 70.

    McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D 63, 32–41 (2007).

  71. 71.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

  72. 72.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

  73. 73.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

  74. 74.

    Oliveira, S. H. P. et al. KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinforma. 15, 197 (2014).

  75. 75.

    Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

  76. 76.

    Sainsbury, F., Thuenemann, E. C. & Lomonossoff, G. P. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol. J. 7, 682–693 (2009).

  77. 77.

    Peyret, H. & Lomonossoff, G. P. The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol. Biol. 83, 51–58 (2013).

  78. 78.

    Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J. & Schilperoort, R. A. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179 (1983).

  79. 79.

    Charpentier, B., Bardey, V., Robas, N. & Branlant, C. The EIIGlc protein is involved in glucose-mediated activation of Escherichia coli gapA and gapB-pgk transcription. J. Bacteriol. 180, 6476–6483 (1998).

  80. 80.

    Olins, P. O. & Rangwala, S. H. A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J. Biol. Chem. 264, 16973–16976 (1989).

  81. 81.

    Chen, Y.-J. et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659–664 (2013).

  82. 82.

    Khlebnikov, A., Datsenko, K. A., Skaug, T., Wanner, B. L. & Keasling, J. D. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247 (2001).

  83. 83.

    Mumberg, D., Müller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).

  84. 84.

    Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

  85. 85.

    Ferrer, J. L., Jez, J. M., Bowman, M. E., Dixon, R. A. & Noel, J. P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6, 775–784 (1999).

Download references

Acknowledgements

This work was supported by grants from the Smith Family Foundation, Edward N. and Della L. Thome Memorial Foundation, the Family Larsson-Rosenquist Foundation and the National Science Foundation (grant no. CHE-1709616). T.P. is a Simons Foundation Fellow of the Helen Hay Whitney Foundation. J.-K.W is supported by the Beckman Young Investigator Program, Pew Scholars Program in the Biomedical Sciences (grant no. 27345) and the Searle Scholars Program (grant no. 15-SSP-162). This work is on the basis of research conducted at the Northeastern Collaborative Access Team (NE-CAT) beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (P41 GM103403). The Pilatus 6 M detector on NE-CAT 24-ID-C beam line is funded by an NIH-ORIP HEI grant (S10 RR029205). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. RNA-seq service was provided free of charge by the Beijing Genome Institute in exchange for an evaluation of their BGISEQ-500 sequencing platform. We thank B. Marotta for an introduction to kava, C. Nguyen and F. A. Samatey for advice regarding crystallography, G. Fink for providing yeast strains and expression vectors and Weng lab members for constructive comments.

Author information

T.P. and J.-K.W. designed experiments. T.P. performed most of the experiments. M.P.T.-S. assisted with cloning and crystallography. T.R.F. assisted with transcriptome assembly and LC–MS analyses. A.D.A. cloned genes and purified proteins. C.H.S. constructed expression vectors. T.P. analysed data. T.P. and J.-K.W. wrote the paper.

Correspondence to Jing-Ke Weng.

Ethics declarations

Competing interests

T.P. and J.-K.W. have filed a patent application on metabolic engineering of kavalactones and flavokavains using the enzymes discovered in this study. J.-K.W. is a co-founder, a member of the Scientific Advisory Board and a shareholder of DoubleRainbow Biosciences, which develops biotechnologies related to natural products. All other authors have no competing interests.

Additional information

Peer review information: Nature Plants thanks Fernando Geu-Flores and Reuben Peters and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Supplementary Notes 1–7, Supplementary Tables 1–5 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark