Grazing animals drove domestication of grain crops


In addition to large-seeded cereals, humans around the world during the mid-Holocene started to cultivate small-seeded species of herbaceous annuals for grain, including quinoa, amaranth, buckwheat, the millets and several lost crops domesticated in North America. The wild ancestors of these crops have small seeds with indigestible defences and do not germinate readily. Today, these wild plants exist in small fragmentary stands that are not appealing targets for foragers. This combination of traits has led many to argue that they must have been a food of last resort. We propose a new explanation: the domestication of small-seeded annuals involved a switch from endozoochoric dispersal (through animal ingestion) to human dispersal. Humans encountered these plants in dense stands created by grazing megafauna, making them easy to harvest. As humans began to cultivate these plants they took on the functional role of seed dispersers, and traits associated with endozoochory were lost or reduced. The earliest traits of domestication—thinning or loss of indigestible seed protections, loss of dormancy and increased seed size—can all be explained by the loss of the ruminant dispersal process and concomitant human management of wild stands. We demonstrate, by looking at rangeland ecology and herd animal herbivory patterns, that the progenitors of all of these species evolved to be dispersed by megafaunal ruminants and that heavy herbivory leads to dense homogenous clusters of endozoochoric plants. Hence, easily harvested stands on nitrogen hot spots near water sources would have existed in regions where these plants were domesticated. Future experimental and ecological studies could enhance our understanding of the relationships between specific crops and their possible ruminant dispersers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Centres or regions of small-seeded grain domestication in relation to major ranges of extant ungulates.
Fig. 2: Modern seeds simulating the process towards domestication in several globally important economic crops.
Fig. 3: Mature seeds or fruits adhere to senesced wild crop relatives in the manner of domesticated grains that ‘wait for the harvester’.


  1. 1.

    Cohen, M. N. The Food Crisis in Prehistory (Yale University Press, 1977).

  2. 2.

    Harlan, J. R. & De Wet, J. M. J. Some thoughts about weeds. Econ. Bot. 19, 16–24 (1965).

    Article  Google Scholar 

  3. 3.

    Hillman, G. C., Colledge, S. M. & Harris, D. R. in Foraging And Farming: The Evolution Of Plant Exploitation (eds Hillman, G. C., Colledge, S. M. & Harris, D. R.) 240–268 (Unwin Hyman, 1989).

  4. 4.

    Zeder, M. A. & Smith, B. D. A conversation on agricultural origins. Curr. Anthropol. 50, 681–690 (2009).

    Article  Google Scholar 

  5. 5.

    Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Wood, D. & Lenné, J. M. A natural adaptive syndrome as a model for the origins of cereal agriculture. P. R. Soc. B 285, 20180277 (2018).

    Article  Google Scholar 

  7. 7.

    Harlan, J. R. & Zohary, D. Distribution of wild wheats and barley. Science 153, 1074–1080 (1966).

    CAS  Article  Google Scholar 

  8. 8.

    Hillman, G. in The Origins And Spread Of Agriculture And Pastoralism In Eurasia (Ed. Harris, D. R.) 159–203 (University College Press, 1996).

  9. 9.

    Janzen, D. H. Dispersal of small seeds by big herbivores: foliage is the fruit. Am. Nat. 123, 338–353 (1984).

    Article  Google Scholar 

  10. 10.

    Eriksson, O. Evolution of seed size and biotic seed dispersal in angiosperms: paleoecological and neoecological evidence. Int. J. Plant Sci. 169, 863–870 (2008).

    Article  Google Scholar 

  11. 11.

    Tiffney, B. H. & Mazer, S. J. Angiosperm growth habit, dispersal and diversification reconsidered. Evol. Ecol. 9, 93–117 (1995).

    Article  Google Scholar 

  12. 12.

    Yu, X., Xu, C., Wang, F., Shang, Z. & Long, R. Recovery and germinability of seeds ingested by yaks and Tibetan sheep could have important effects on the population dynamics of alpine meadow plants on the Qinghai-Tibetan Plateau. Rangeland J. 34, 249–255 (2012).

    Article  Google Scholar 

  13. 13.

    Connell, J. H. in Dynamics Of Numbers In Populations (eds den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentations, 1971).

  14. 14.

    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

    Article  Google Scholar 

  15. 15.

    Kellner, J. R. & Hubbell, S. P. Density-dependent adult recruitment in a low-density tropical tree. Proc. Natl Acad. Sci. USA 115, 11268–11273 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Jacobs, B. F., Kingston, J. D. & Jacobs, L. L. The origin of grass-dominated ecosystems. Ann. Mo. Bot. Gard. 86, 590–643 (1999).

    Article  Google Scholar 

  17. 17.

    Stebbins, G. L. Coevolution of grasses and herbivores. Ann. Mo. Bot. Gard. 68, 75–86 (1981).

    Article  Google Scholar 

  18. 18.

    Friis, E. M. Climatic implications of microcarpological analyses of the Miocene Fasterholt flora, Denmark. B. Geol. Soc. Denmark 24, 179–191 (1975).

    Google Scholar 

  19. 19.

    Aliscioni, S. S., Giussani, L. M., Zuloaga, F. O. & Kellogg, E. A. A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. Am. J. Bot. 90, 796–821 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    Kuznar, L. A. Mutualism between Chenopodium, herd animals, and herders in the south central Andes. Mt. Res. Dev. 13, 257–265 (1993).

    Article  Google Scholar 

  21. 21.

    Mueller, N. G., Fritz, G. J., Patton, P., Carmody, S. B. & Horton, E. T. Growing the lost crops of eastern North America’s original agricultural system. Nat. Plants 3, 1–5 (2017).

    Article  Google Scholar 

  22. 22.

    Guimarães, P. R. Jr, Galetti, M. & Jordano, P. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PloS ONE 3, e1745 (2008).

    Article  Google Scholar 

  23. 23.

    Kistler, L. et al. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proc. Natl Acad. Sci. USA 112, 15107–15112 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).

    Article  Google Scholar 

  25. 25.

    Morales, J. M. & Carlo, T. A. The effects of plant distribution and frugivore density on the scale and shape of dispersal kernels. Ecology 87, 1489–1496 (2006).

    Article  Google Scholar 

  26. 26.

    Onstein, R. E. et al. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. P. R. Soc. B 285, 20180882 (2018).

    Article  Google Scholar 

  27. 27.

    Hunt, H. V., Shang, X. & Jones, M. K. Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Veg. Hist. Archaeobot. 27, 493–506 (2018).

    PubMed  Google Scholar 

  28. 28.

    Mueller, N. G. Evolutionary “bet-hedgers” under cultivation: investigating the domestication of erect knotweed (Polygonum erectum L.) using growth experiments. Hum. Ecol. 45, 189–203 (2017).

    Article  Google Scholar 

  29. 29.

    Small, E. Evolution and classification of Cannabis sativa (Marijuana, Hemp) in relation to human utilization. Bot. Rev. 81, 189–294 (2015).

    Article  Google Scholar 

  30. 30.

    Rule, S. et al. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    van Zonneveld, M. et al. Human diets drive range expansion of megafauna-dispersed fruit species. Proc. Natl Acad. Sci. USA 115, 3326–3331 (2018).

    Article  Google Scholar 

  32. 32.

    Doughty, C. E. et al. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39, 194–203 (2016).

    Article  Google Scholar 

  33. 33.

    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).

    Article  Google Scholar 

  34. 34.

    Anderson, E. Plants, Man and Life (Missouri Botanical Garden, 1952).

  35. 35.

    Sauer, C. O. Seeds, Spades, Hearths, and Herds: The Domestication of Animals and Foodstuffs (MIT Press, 1952).

  36. 36.

    Smith, B. D. (ed) Rivers of Change: Essays on Early Agriculture in North America (Smithsonian Institution Press, 1992).

  37. 37.

    Struever, S. & Vickery, K. D. The beginnings of cultivation in the midwest-riverine area of the United States. Am. Anthropol. 75, 1197–1220 (1973).

    Article  Google Scholar 

  38. 38.

    Rindos, D. The Origins of Agriculture: An Evolutionary Perspective (Academic Press, 1984).

  39. 39.

    Matsui, K., Tetsuka, T. & Hara, T. Two independent gene loci controlling non-brittle pedicels in buckwheat. Euphytica 134, 203–208 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Jia, G. et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat. Genet. 45, 957 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Fuller, D. Q. & Allaby, R. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Ann. Plant Rev. 38, 238–295 (2009).

    Google Scholar 

  42. 42.

    Li, L.-F. & Olsen, K. M. in Current Topics in Developmental Biology Vol. 119 (Ed. Orgogozo, V.) 63–109 (Elsevier, 2016).

  43. 43.

    Ellstrand, N. C. Is gene flow the most important evolutionary force in plants? Am. J. Bot. 101, 737–753 (2014).

    Article  Google Scholar 

  44. 44.

    Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).

  45. 45.

    Feder, J. L., Egan, S. P. & Nosil, P. The genomics of speciation-with-gene-flow. Trends Genet. 28, 342–350 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Jara‐Guerrero, A., Escribano‐Avila, G., Espinosa, C. I., De la Cruz, M. & Méndez, M. White‐tailed deer as the last megafauna dispersing seeds in Neotropical dry forests: the role of fruit and seed traits. Biotropica 50, 169–177 (2018).

    Article  Google Scholar 

  47. 47.

    Nathan, R. & Muller-Landau, H. C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15, 278–285 (2000).

    CAS  Article  Google Scholar 

  48. 48.

    Cotton, J. M., Sheldon, N. D. & Strömberg, C. A. High-resolution isotopic record of C4 photosynthesis in a Miocene grassland. Palaeogeogr. Palaeocl. 337, 88–98 (2012).

    Article  Google Scholar 

  49. 49.

    Clark, J. S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204–224 (1998).

    CAS  Article  Google Scholar 

  50. 50.

    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).

    CAS  Article  Google Scholar 

  51. 51.

    Manzano, P., Malo, J. E. & Peco, B. Sheep gut passage and survival of Mediterranean shrub seeds. Seed Sci. Res. 15, 21–28 (2005).

    Article  Google Scholar 

  52. 52.

    Campbell, J. E. & Gibson, D. J. The effect of seeds of exotic species transported via horse dung on vegetation along trail corridors. Plant Ecol. 157, 23–35 (2001).

    Article  Google Scholar 

  53. 53.

    Pakeman, R. J. Plant migration rates and seed dispersal mechanisms. J. Biogeogr. 28, 795–800 (2001).

    Article  Google Scholar 

  54. 54.

    Milotić, T. & Hoffmann, M. How does gut passage impact endozoochorous seed dispersal success? Evidence from a gut environment simulation experiment. Basic Appl. Ecol. 17, 165–176 (2016).

    Article  Google Scholar 

  55. 55.

    Small, E., Pocock, T. & Cavers, P. B. The biology of Canadian weeds: Cannabis sativa L. Can. J. Plant Sci. 83, 217–237 (2003).

    Article  Google Scholar 

  56. 56.

    Wicklow, D. & Zak, J. Viable grass seeds in herbivore dung from a semi‐arid grassland. Grass Forage Sci. 38, 25–26 (1983).

    Article  Google Scholar 

  57. 57.

    Eycott, A., Watkinson, A., Hemami, M.-R. & Dolman, P. The dispersal of vascular plants in a forest mosaic by a guild of mammalian herbivores. Oecologia 154, 107–118 (2007).

    CAS  Article  Google Scholar 

  58. 58.

    Anderson, T. M., Schütz, M. & Risch, A. C. Endozoochorous seed dispersal and germination strategies of Serengeti plants. J. Veg. Sci. 25, 636–647 (2013).

    Article  Google Scholar 

  59. 59.

    Wilson, G. & Hennessy, D. The germination of excreted kikuyu grass seed in cattle dung pats. J. Agr. Sci. 88, 247–249 (1977).

    Article  Google Scholar 

  60. 60.

    Rosas, C. A., Engle, D. M., Shaw, J. H. & Palmer, M. W. Seed dispersal by Bison bison in a tallgrass prairie. J. Veg. Sci. 19, 769–778 (2008).

    Article  Google Scholar 

  61. 61.

    Miller, N. F. & Smart, T. L. Intentional burning of dung as fuel: a mechanism for the incorporation of charred seeds into the archaeological record. J. Ethnobiol. 4, 15 (1984).

    Google Scholar 

  62. 62.

    Sánchez, A. M. & Peco, B. Dispersal mechanisms in Lavandula stoechas subsp. pedunculata: autochory and endozoochory by sheep. Seed Sci. Res. 12, 101–111 (2002).

    Article  Google Scholar 

  63. 63.

    Spengler, R. N. III, Frachetti, M. D. & Fritz, G. J. Ecotopes and herd foraging practices in the steppe/mountain ecotone of Central Asia during the Bronze and Iron Ages. J. Ethnobiol. 33, 125–147 (2013).

    Article  Google Scholar 

  64. 64.

    Spengler, R. N. Dung buring in the archaeobotanical record of West Asia: where are we now? Veg. Hist. Archaeobot. (2018).

  65. 65.

    Janzen, D. H. Differential seed survival and passage rates in cows and horses, surrogate Pleistocene dispersal agents. Oikos 38, 150–156 (1982).

    Article  Google Scholar 

  66. 66.

    Wallace, M. & Charles, M. What goes in does not always come out: the impact of the ruminant digestive system of sheep on plant material, and its importance for the interpretation of dung-derived archaeobotanical assemblages. Environ. Archaeol. 18, 18–30 (2013).

    Article  Google Scholar 

  67. 67.

    Marshall, F. et al. Ancient herders enriched and restructured African grasslands. Nature 561, 387–390 (2018).

    CAS  Article  Google Scholar 

  68. 68.

    Muchiru, A. N., Western, D. & Reid, R. S. The impact of abandoned pastoral settlements on plant and nutrient succession in an African savanna ecosystem. J. Arid Environ. 73, 322–331 (2009).

    Article  Google Scholar 

  69. 69.

    Söderström, B. & Reid, R. S. Abandoned pastoral settlements provide concentrations of resources for savanna birds. Acta Oecologica 36, 184–190 (2010).

    Article  Google Scholar 

  70. 70.

    Veblen, K. E. Impacts of traditional livestock corrals on woody plant communities in an East African savanna. Rangeland J. 35, 349–353 (2013).

    Article  Google Scholar 

  71. 71.

    Knapp, A. K. et al. The keystone role of bison in North American tallgrass prairie: bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. BioScience 49, 39–50 (1999).

    Article  Google Scholar 

  72. 72.

    Sternberg, T. Piospheres and pastoralists: vegetation and degradation in steppe grasslands. Hum. Ecol. 40, 811–820 (2012).

    Article  Google Scholar 

  73. 73.

    Kuznar, L. A. Ecological mutualism in Navajo corrals: implications for Navajo environmental perceptions and human/plant coevolution. J. Anthropol. Res. 57, 17–39 (2001).

    Article  Google Scholar 

  74. 74.

    Hastorf, C. A. & Wright, M. F. Interpreting wild seeds from archaeological sites: a dung charring experiment from the Andes. J. Ethnobiol. 18, 211–211 (1998).

    Google Scholar 

  75. 75.

    Lezama-Núñez, P. R., Santos-Fita, D. & Vallejo, J. R. Herding ecologies and ongoing plant domestication processes in the Americas. Front. Plant Sci. 9, 649 (2018).

    Article  Google Scholar 

  76. 76.

    Andrews, T. D. et al. Alpine ice patches and Shúhtagot’ine land use in the Mackenzie and Selwyn Mountains, northwest territories, Canada. Arctic 65 (Suppl), 22–42 (2012).

  77. 77.

    Milton, S. J. & Dean, W. Seeds dispersed in dung of insectivores and herbivores in semi-arid southern Africa. J. Arid Environ. 47, 465–483 (2001).

    Article  Google Scholar 

  78. 78.

    González, Jd. J. S. et al. Ecogeography of teosinte. PloS ONE 13, e0192676 (2018).

    Article  Google Scholar 

  79. 79.

    Piperno, D. R., Holst, I., Winter, K. & McMillan, O. Teosinte before domestication: experimental study of growth and phenotypic variability in late pleistocene and early holocene environments. Quatern. Int. 363, 65–77 (2015).

    Article  Google Scholar 

  80. 80.

    Small, E. Adaptations to herbivory in alfalfa (Medicago sativa). Can. J. Botany 74, 807–822 (1996).

    Article  Google Scholar 

  81. 81.

    Abbo, S. et al. Experimental growing of wild pea in Israel and its bearing on near eastern plant domestication. Ann. Bot. 107, 1399–1404 (2011).

    CAS  Article  Google Scholar 

  82. 82.

    Ladizinsky, G. Pulse domestication before cultivation. Econ. Bot. 41, 60–65 (1987).

    Article  Google Scholar 

  83. 83.

    Leishman, M. R., Wright, I. J., Moles, A. T. & Westoby, M. in Seeds: The Ecology of Regeneration in Plant Communities (ed. Fenner, M.) 31–57 (Oxford University Press, 2000).

  84. 84.

    Westoby, M. How diversified seed germination behavior is selected. Am. Nat. 118, 882–885 (1981).

    Article  Google Scholar 

  85. 85.

    Childs, D. Z., Metcalf, C. J. E. & Rees, M. Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. P. R. Soc. B 277, 1–10 (2010).

    Article  Google Scholar 

  86. 86.

    Silvertown, J. W. Phenotypic Variety in seed germination behavior: the ontogeny and evolution of somatic polymorphism in seeds. Am. Nat. 124, 1–16 (1984).

    Article  Google Scholar 

  87. 87.

    Venable, D. L. The evolutionary ecology of seed heteromorphism. Am. Nat. 126, 577–595 (1985).

    Article  Google Scholar 

  88. 88.

    Jaganathan, G. K., Yule, K. & Liu, B. On the evolutionary and ecological value of breaking physical dormancy by endozoochory. Perspect. Plant Ecol. 22, 11–22 (2016).

    Article  Google Scholar 

  89. 89.

    Sultan, S. E. Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology 77, 1791–1807 (1996).

    Article  Google Scholar 

  90. 90.

    Faurby, S. & Svenning, J. C. Historic and prehistoric human‐driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).

    Article  Google Scholar 

Download references

Author information




R.N.S. and N.J.M. contributed to the conception, interpretation and drafting of the work.

Corresponding author

Correspondence to Robert N. Spengler III.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spengler, R.N., Mueller, N.G. Grazing animals drove domestication of grain crops. Nat. Plants 5, 656–662 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing