Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Building new insights in plant gametogenesis from an evolutionary perspective

Abstract

Extant bryophytes are thought to preserve characteristics of ancestral land plants, with a life cycle dominated by the haploid gametophyte. The gametophyte produces gametes in specialized organs that differentiate after an extensive phase of vegetative development. During land plant evolution, these organs became extremely reduced. As a result, in flowers of angiosperms the haploid phase of the life cycle is reduced to few-celled gametophytes, namely the embryo sac (female) and pollen (male). Although many factors contributing to gametogenesis have been identified in flowering plants, the extreme reduction of the gametophytes has prevented a clear molecular dissection of key processes of gametogenesis. Recent studies in the model bryophyte Marchantia polymorpha have identified conserved transcription factors regulating the equivalent steps in the sexual reproduction of land plants. These include FEMALE GAMETOPHYTE MYB for female gametophyte development, BONOBO for gamete progenitor cell specification, DUO POLLEN1 for sperm differentiation and members of the RWP-RK domain family for female gamete formation. These studies demonstrate that M. polymorpha is a powerful model to untangle the core processes of gametogenesis in land plants. We anticipate that a deeper understanding of gametogenesis in bryophytes will circumscribe the origin of plant germ cells and define the differentiation programmes of sperm and eggs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sex determination of the gametophyte in M. polymorpha.
Fig. 2: Comparison between the controls of gametogenesis in A. thaliana and M. polymorpha.

Similar content being viewed by others

References

  1. de Sousa, F., Foster, P. G., Donoghue, P. C. J., Schneider, H. & Cox, C. J. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytol. 222, 565–575 (2019).

    Article  Google Scholar 

  2. Shaw, A. J., Szovenyi, P. & Shaw, B. Bryophyte diversity and evolution: windows into the early evolution of land plants. Am. J. Bot. 98, 352–369 (2011).

    Article  Google Scholar 

  3. Renner, S., Heinrichs, J. & Sousa, A. The sex chromosomes of bryophytes: recent insights, open questions, and reinvestigations of Frullania dilatata and Plagiochila asplenioides. J. Syst. Evol. 55, 333–339 (2017).

    Article  Google Scholar 

  4. Berger, F., Bowman, J. L. & Kohchi, T. Marchantia. Curr. Biol. 26, R186–R187 (2016).

  5. Bowman, J. L., Araki, T. & Kohchi, T. Marchantia: past, present and future. Plant Cell Physiol. 57, 205–209 (2016).

    Article  CAS  Google Scholar 

  6. Berger, F. & Twell, D. Germline specification and function in plants. Annu. Rev. Plant Biol. 62, 461–484 (2011).

    Article  CAS  Google Scholar 

  7. Akagi, T. et al. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell 30, 780–795 (2018).

    Article  CAS  Google Scholar 

  8. Akagi, T., Henry, I. M., Tao, R. & Comai, L. Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014).

    Article  CAS  Google Scholar 

  9. Murase, K. et al. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22, 115–123 (2017).

    Article  CAS  Google Scholar 

  10. Tsugama, D. et al. A putative MYB35 ortholog is a candidate for the sex-determining genes in Asparagus officinalis. Sci. Rep. 7, 41497 (2017).

    Article  CAS  Google Scholar 

  11. Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).

    Article  Google Scholar 

  12. Avia, K. et al. Genetic diversity in the UV sex chromosomes of the brown alga Ectocarpus. Genes 9, 286 (2018).

    Article  Google Scholar 

  13. Yamato, K. T. et al. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc. Natl Acad. Sci. USA 104, 6472–6477 (2007).

    Article  CAS  Google Scholar 

  14. Shimamura, M. Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol. 57, 230–256 (2016).

    Article  CAS  Google Scholar 

  15. Hisanaga, T. et al. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J. 38, e100240 (2019).

    Article  Google Scholar 

  16. Lorbeer, G. Über das Vorkommen von drei verschiedenen Geschlechtsrealisatoren bei den Lebermoosen. Planta 27, 708–717 (1938).

    Article  Google Scholar 

  17. Csorba, T., Questa, J. I., Sun, Q. & Dean, C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc. Natl Acad. Sci. USA 111, 16160–16165 (2014).

    Article  CAS  Google Scholar 

  18. Fedak, H. et al. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc. Natl Acad. Sci. USA 113, E7846–E7855 (2016).

    Article  CAS  Google Scholar 

  19. Rosa, S., Duncan, S. & Dean, C. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 7, 13031 (2016).

    Article  CAS  Google Scholar 

  20. Yuan, W. et al. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat. Genet. 48, 1527–1534 (2016).

    Article  CAS  Google Scholar 

  21. Sugano, S. S. et al. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS ONE 13, e0205117 (2018).

    Article  Google Scholar 

  22. Sugano, S. S. et al. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol. 55, 475–481 (2014).

    Article  CAS  Google Scholar 

  23. Kasahara, R. D., Portereiko, M. F., Sandaklie-Nikolova, L., Rabiger, D. S. & Drews, G. N. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17, 2981–2992 (2005).

    Article  CAS  Google Scholar 

  24. Rabiger, D. S. & Drews, G. N. MYB64 and MYB119 are required for cellularization and differentiation during female gametogenesis in Arabidopsis thaliana. PLoS Genet. 9, e1003783 (2013).

    Article  CAS  Google Scholar 

  25. Troncoso-Ponce, M. A. et al. Transcriptional activation of two delta-9 palmitoyl-ACP desaturase genes by MYB115 and MYB118 is critical for biosynthesis of omega-7 monounsaturated fatty acids in the endosperm of Arabidopsis seeds. Plant Cell 28, 2666–2682 (2016).

    Article  CAS  Google Scholar 

  26. Nishiyama, T. et al. The chara genome: secondary complexity and implications for plant terrestrialization. Cell 174, 448–464 (2018).

    Article  CAS  Google Scholar 

  27. Haupt, A. W. Morphology of Preissia quadrata. Bot. Gaz. 82, 30–54 (1926).

    Article  Google Scholar 

  28. Durand, E. J. The development of the sexual organs and sporogonium of Marchantia polymorpha. B. Torrey Bot. Club 35, 321–335 (1908).

    Article  Google Scholar 

  29. Yamaoka, S. et al. Generative cell specification requires transcription factors evolutionarily conserved in land plants. Curr. Biol. 28, 479–486 (2018).

    Article  CAS  Google Scholar 

  30. Eady, C., Lindsey, K. & Twell, D. The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7, 65–74 (1995).

    Article  CAS  Google Scholar 

  31. Park, S. K., Howden, R. & Twell, D. The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125, 3789–3799 (1998).

    CAS  PubMed  Google Scholar 

  32. Twell, D. et al. MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat. Cell Biol. 4, 711–714 (2002).

    Article  CAS  Google Scholar 

  33. Lee, Y. R., Li, Y. & Liu, B. Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis. Plant Cell 19, 2595–2605 (2007).

    Article  CAS  Google Scholar 

  34. Oh, S. A., Bourdon, V., Das ‘Pal, M., Dickinson, H. & Twell, D. Arabidopsis kinesins HINKEL and TETRASPORE act redundantly to control cell plate expansion during cytokinesis in the male gametophyte. Mol. Plant 1, 794–799 (2008).

    Article  CAS  Google Scholar 

  35. Schmidt, A., Schmid, M. W. & Grossniklaus, U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142, 229–241 (2015).

    Article  CAS  Google Scholar 

  36. Zhang, J. et al. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat. Plants 3, 17079 (2017).

    Article  Google Scholar 

  37. Breuninger, H. et al. Diversification of a transcription factor family led to the evolution of antagonistically acting genetic regulators of root hair growth. Curr. Biol. 26, 1622–1628 (2016).

    Article  CAS  Google Scholar 

  38. Karas, B. et al. Conservation of lotus and Arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. Plant Physiol. 151, 1175–1185 (2009).

    Article  CAS  Google Scholar 

  39. Lin, Q. et al. GLABRA2 directly suppresses basic helix-loop-helix transcription factor genes with diverse functions in root hair development. Plant Cell 27, 2894–2906 (2015).

    Article  CAS  Google Scholar 

  40. Tam, T. H., Catarino, B. & Dolan, L. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants. Proc. Natl Acad. Sci. USA 112, E3959–E3968 (2015).

    Article  CAS  Google Scholar 

  41. Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).

    Article  CAS  Google Scholar 

  42. Catarino, B., Hetherington, A. J., Emms, D. M., Kelly, S. & Dolan, L. The stepwise increase in the number of transcription factor families in the Precambrian predated the diversification of plants on land. Mol. Biol. Evol. 33, 2815–2819 (2016).

    Article  CAS  Google Scholar 

  43. Rotman, N. et al. A novel class of MYB factors controls sperm-cell formation in plants. Curr. Biol. 15, 244–248 (2005).

    Article  CAS  Google Scholar 

  44. Borg, M. et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23, 534–549 (2011).

    Article  CAS  Google Scholar 

  45. Brownfield, L. et al. A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet. 5, e1000430 (2009).

    Article  Google Scholar 

  46. Higo, A. et al. Transcriptional framework of male gametogenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol. 57, 325–338 (2016).

    Article  CAS  Google Scholar 

  47. Renzaglia, K. S. & Garbary, D. J. Motile gametes of land plants: diversity, development, and evolution. Crit. Rev. Plant Sci. 20, 107–213 (2001).

    Article  Google Scholar 

  48. Higo, A. et al. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat. Commun. 9, 5283 (2018).

    Article  Google Scholar 

  49. McCourt, R. M., Delwiche, C. F. & Karol, K. G. Charophyte algae and land plant origins. Trends Ecol. Evol. 19, 661–666 (2004).

    Article  Google Scholar 

  50. Ingouff, M. et al. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr. Biol. 20, 2137–2143 (2010).

    Article  CAS  Google Scholar 

  51. Borg, M. et al. An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis. Plant Cell 26, 2098–2113 (2014).

    Article  CAS  Google Scholar 

  52. Mori, T., Kuroiwa, H., Higashiyama, T. & Kuroiwa, T. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8, 64–71 (2006).

    Article  CAS  Google Scholar 

  53. von Besser, K., Frank, A. C., Johnson, M. A. & Preuss, D. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133, 4761–4769 (2006).

    Article  Google Scholar 

  54. Munakata, H., Nakada, T., Nakahigashi, K., Nozaki, H. & Tomita, M. Phylogenetic position and molecular chronology of a colonial green flagellate, Stephanosphaera pluvialis (Volvocales, Chlorophyceae), among unicellular algae. J. Eukaryot. Microbiol. 63, 340–348 (2016).

    Article  CAS  Google Scholar 

  55. Matt, G. & Umen, J. Volvox: a simple algal model for embryogenesis, morphogenesis and cellular differentiation. Dev. Biol. 419, 99–113 (2016).

    Article  CAS  Google Scholar 

  56. Ferris, P. J. & Goodenough, U. W. Mating type in Chlamydomonas is specified by mid, the minus-dominance gene. Genetics 146, 859–869 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Geng, S., De Hoff, P. & Umen, J. G. Evolution of sexes from an ancestral mating-type specification pathway. PLoS Biol. 12, e1001904 (2014).

    Article  Google Scholar 

  58. Geng, S., Miyagi, A. & Umen, J. G. Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae. Development 145, dev162537 (2018).

    Article  Google Scholar 

  59. Nozaki, H., Mori, T., Misumi, O., Matsunaga, S. & Kuroiwa, T. Males evolved from the dominant isogametic mating type. Curr. Biol. 16, 24 (2006).

    Article  Google Scholar 

  60. Rövekamp, M., Bowman, J. L. & Grossniklaus, U. Marchantia MpRKD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr. Biol. 26, 1782–1789 (2016).

    Article  Google Scholar 

  61. Drews, G. N. & Koltunow, A. M. The female gametophyte. The Arabidopsis Book 9, e0155 (2011).

    Article  Google Scholar 

  62. Koszegi, D. et al. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J. 67, 280–291 (2011).

    Article  Google Scholar 

  63. Jeong, S., Palmer, T. M. & Lukowitz, W. The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Curr. Biol. 21, 1268–1276 (2011).

    Article  CAS  Google Scholar 

  64. Waki, T., Hiki, T., Watanabe, R., Hashimoto, T. & Nakajima, K. The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr. Biol. 21, 1277–1281 (2011).

    Article  CAS  Google Scholar 

  65. Koi, S. et al. An evolutionarily conserved plant RKD factor controls germ cell differentiation. Curr. Biol. 26, 1775–1781 (2016).

    Article  CAS  Google Scholar 

  66. Mimura, M., Kudo, T., Wu, S., McCarty, D. R. & Suzuki, M. Autonomous and non-autonomous functions of the maize Shohai1 gene, encoding a RWP-RK putative transcription factor, in regulation of embryo and endosperm development. Plant J. 95, 892–908 (2018).

    Article  CAS  Google Scholar 

  67. Tedeschi, F., Rizzo, P., Rutten, T., Altschmied, L. & Baumlein, H. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. New Phytol. 213, 1909–1924 (2017).

    Article  CAS  Google Scholar 

  68. Charlesworth, D. Plant Sex Chromosomes. Annu. Rev. Plant Biol. 67, 397–420 (2016).

    Article  CAS  Google Scholar 

  69. Coelho, S. M., Gueno, J., Lipinska, A. P., Cock, J. M. & Umen, J. G. UV Chromosomes and haploid sexual systems. Trends Plant Sci. 23, 794–807 (2018).

    Article  CAS  Google Scholar 

  70. Slate, M. L., Rosenstiel, T. N. & Eppley, S. M. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales). Ann. Bot. 120, 845–854 (2017).

    Article  Google Scholar 

  71. Gross-Hardt, R. et al. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol. 5, e47 (2007).

    Article  Google Scholar 

  72. Moll, C. et al. CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J. 56, 913–921 (2008).

    Article  CAS  Google Scholar 

  73. Schmid, M. W. et al. Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha. Genome Biol. 19, 9 (2018).

    Article  Google Scholar 

  74. Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sean A. Montgomery and M. Watson for the critical reading of the manuscript. F.B. and T. Kawashima were supported by GMI and FWF (grant no. I2163-B16) linked to the ERA-CAPS consortium, EvoRepro. T. Kawashima was supported by the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Program (grant no. 1014280). MEXT/JSPS KAKENHI grants were provided to T.H. (grant no. 17J08430), S.Y. (grant nos. 17H05841, 18K06285 and 19H04860), A.H. (grant no. 17J01153), K.N. (grant no. 25113007), T.A. (grant nos. 25113005, 23370022, 24657031 and 19H03244) and T. Kohchi (grant nos. 25113001, 25113009, 15K21758 and 17H07424).

Author information

Authors and Affiliations

Authors

Contributions

T.H., S.Y., T. Kawashima and F. B. led the writing of the manuscript. T.A., K.N. and A.H. contributed to the critical reading of the manuscript, provided suggestions and contributed to the writing of specific sections. T. Kohchi contributed to the critical reading of the manuscript and provided suggestions. S.Y. and T.A. composed the figures. F.B. initiated and coordinated the project.

Corresponding author

Correspondence to Frédéric Berger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks F. W. Li and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hisanaga, T., Yamaoka, S., Kawashima, T. et al. Building new insights in plant gametogenesis from an evolutionary perspective. Nat. Plants 5, 663–669 (2019). https://doi.org/10.1038/s41477-019-0466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0466-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing