A stigmatic gene confers interspecies incompatibility in the Brassicaceae

Abstract

Pre-zygotic interspecies incompatibility in angiosperms is a male–female relationship that inhibits the formation of hybrids between two species. Here, we report on the identification of STIGMATIC PRIVACY 1 (SPRI1), an interspecies barrier gene in Arabidopsis thaliana. We show that the rejection activity of this stigma-specific plasma membrane protein is effective against distantly related Brassicaceae pollen tubes and is independent of self-incompatibility. Point-mutation experiments and functional tests of synthesized hypothetical ancestral forms of SPRI1 suggest evolutionary decay of SPRI1-controlled interspecies incompatibility in self-compatible A. thaliana. Hetero-pollination experiments indicate that SPRI1 ensures intraspecific fertilization in the pistil when pollen from other species are present. Our study supports the idea that SPRI1 functions as a barrier mechanism that permits entrance of pollen with an intrinsic signal from self species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification of an interspecific incompatibility-related gene locus via GWAS.
Fig. 2: SPRI1 function has been lost multiple times in the self-compatible A. thaliana.
Fig. 3: SPRI1 is functionally independent of SI.
Fig. 4: Col-0 pollen can mentor the penetration of M. littorea pollen tubes into A. thaliana stigma.
Fig. 5: SPRI1 rejects pollen from distantly related species.
Fig. 6: SPRI1 ensures efficient fertilization under heterologous pollination conditions.

Data availability

Sequence data can be found at The Arabidopsis Information Resource database (https://www.arabidopsis.org/) or in the 1001 genomes website (1001genomes.org). Raw phenotype data used for the GWAS has been deposited in the GWA-Portal (https://gwas.gmi.oeaw.ac.at/#/study/4205/overview) and Arapheno (https://doi.org/10.21958/study:37). Raw data for pollen tube count was deposited to Mendeley (https://doi.org/10.17632/yzy85dtwk3.1). All other data are available in the article or in the Supplementary information.

References

  1. 1.

    de Nettancourt, D. Incompatibility and Incongruity in Wild and Cultivated Plants (Springer, 2001).

  2. 2.

    Hogenboom, N. G. & Mather, K. Incompatibility and incongruity: two different mechanisms for the non-functioning of intimate partner relationships. Proc. Roy. Soc. B 188, 361–375 (1975).

    Article  Google Scholar 

  3. 3.

    Okuda, S. et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357–361 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Takeuchi, H. & Higashiyama, T. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531, 245–248 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Boehm, T. Quality control in self/nonself discrimination. Cell 125, 845–858 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Igic, B., Lande, R. & Kohn, J. R. Loss of self-incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169, 93–104 (2008).

    Article  Google Scholar 

  7. 7.

    Fujii, S., Kubo, K. & Takayama, S. Non-self- and self-recognition models in plant self-incompatibility. Nat. Plants 2, 16130 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Harada, Y. et al. Mechanism of self-sterility in a hermaphroditic chordate. Science 320, 548–550 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Kubo, K. et al. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330, 796–799 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Takayama, S. et al. Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413, 534–538 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    Wheeler, M. J. et al. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459, 992–995 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Wilkins, K. A. et al. Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol. Plant Physiol. 167, 766–779 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Thomas, S. G. & Franklin-Tong, V. E. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429, 305–309 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    Lewis, D. & Crowe, L. K. Unilateral interspecific incompatibility in flowering plants. Heredity 12, 233–256 (1958).

    Article  Google Scholar 

  15. 15.

    Lewis, D. Incompatibility in flowering plants. Biol. Rev. 24, 472–496 (1949).

    CAS  Article  Google Scholar 

  16. 16.

    Hiscock, S. J. & Dickinson, H. G. Unilateral incompatibility within the Brassicaceae: further evidence for the involvement of the self-incompatibility (S)-locus. Theor. Appl. Genet. 86, 744–753 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    Li, W. & Chetelat, R. T. A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 330, 1827–1830 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Murfett, J. et al. S RNase and interspecific pollen rejection in the genus Nicotiana: multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 8, 943–958 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    Li, W. & Chetelat, R. T. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species. Proc. Natl Acad. Sci. USA 112, 4417–4422 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Tovar-Méndez, A. et al. Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. Plant J. 77, 727–736 (2014).

    Article  Google Scholar 

  21. 21.

    Burdfield-Steel, E. R. & Shuker, D. M. Reproductive interference. Curr. Biol. 21, R450–R451 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Tsuchimatsu, T. et al. Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature 464, 1342–1346 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Seren, U. et al. GWAPP: A web application for genome-wide association mapping in Arabidopsis. Plant Cell 24, 4793–4805 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Hooper, C. M. et al. SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics 30, 3356–3364 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Iwano, M. et al. Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nat. Plants 1, 15128 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D. & Penin, A. A. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058–1070 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Novikova, P. Y. et al. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat. Genet. 48, 1077–1082 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Murat, F. et al. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 16, 1–17 (2015).

    Article  Google Scholar 

  29. 29.

    Mizukami, A. G. et al. The AMOR arabinogalactan sugar chain induces pollen-tube competency to respond to ovular guidance. Curr. Biol. 26, 1091–1097 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Hemler, M. E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6, 801–811 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    Miyado, K. et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science 287, 321–324 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    Boavida, L. C., Qin, P., Broz, M., Becker, J. D. & McCormick, S. Arabidopsis tetraspanins are confined to discrete expression domains and cell types in reproductive tissues and form homo- and heterodimers when expressed in yeast. Plant Physiol. 163, 696–712 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Tsuchiya, T. in Sexual Reproduction in Animals and Plants (eds Sawada, H. et al.) 305–325 (Springer, 2014).

  34. 34.

    Vanacker, H., Lu, H., Rate, D. N. & Greenberg, J. T. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J. 28, 209–216 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    Doughty, J., Wong, H. Y. & Dickinson, H. G. Cysteine-rich pollen coat proteins (PCPs) and their Interactions with stigmatic S (incompatibility) and S-related proteins in Brassica: putative roles in SI and pollination. Ann. Bot. 85, 161–169 (2000).

    CAS  Article  Google Scholar 

  36. 36.

    Takada, Y. et al. Duplicated pollen–pistil recognition loci control intraspecific unilateral incompatibility in Brassica rapa. Nat. Plants 3, 17096 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Zhang, Z. et al. A pectin methylesterase gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nat. Commun. 9, 3678 (2018).

    Article  Google Scholar 

  38. 38.

    Tsuchimatsu, T. et al. Patterns of polymorphism at the self-incompatibility Locus in 1,083 Arabidopsis thaliana genomes. Mol. Biol. Evol. 34, 1878–1889 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).

    Article  Google Scholar 

  40. 40.

    Shimizu, K. K., Kudoh, H. & Kobayashi, M. J. Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Ann. Bot. 108, 777–787 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Saito, K. et al. Luminescent proteins for high-speed single-cell and whole-body imaging. Nat. Commun. 3, 1262 (2012).

    Article  Google Scholar 

  42. 42.

    Rawat, V. et al. Improving the annotation of Arabidopsis lyrata using RNA-seq data. PLoS ONE 10, e0137391 (2015).

    Article  Google Scholar 

  43. 43.

    Wang, Z.-P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144 (2015).

    Article  Google Scholar 

  44. 44.

    Iwano, M. et al. Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol. 150, 1322–1334 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Shiba, H. et al. Alteration of the self-incompatibility phenotype in Brassica by transformation of the antisense SLG gene. Biosci. Biotechnol. Biochem. 64, 1016–1024 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    Hasegawa, J. et al. Three-dimensional imaging of plant organs using a simple and rapid transparency technique. Plant Cell Physiol. 57, 462–472 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Seren, Ü. GWA-Portal: Genome-wide association studies made easy. Methods Mol. Biol. 1761, 303–319 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    The 1001 Genomes Consortium 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481–491 (2016).

    Article  Google Scholar 

  49. 49.

    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS  Article  Google Scholar 

  50. 50.

    South, A. rworldmap: A new R package for mapping global data. R Journal 3, 35–43 (2011).

    Article  Google Scholar 

  51. 51.

    Durvasula, A. et al. African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 114, 5213–5218 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  Article  Google Scholar 

  53. 53.

    Hofmann, K. & Stoffel, W. TMBASE-A database of membrane spanning protein segments. Biol. Chem. 374, 166 (1993).

    Google Scholar 

  54. 54.

    Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).

    Article  Google Scholar 

  55. 55.

    Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43, W401–W407 (2015).

    CAS  Article  Google Scholar 

  56. 56.

    Hirokawa, T., Boon-Chieng, S. & Mitaku, S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379 (1998).

    CAS  Article  Google Scholar 

  57. 57.

    Juretić, D., Zoranić, L. & Zucić, D. Basic charge clusters and predictions of membrane protein topology. J. Chem. Inf. Comput. Sci. 42, 620–632 (2002).

    Article  Google Scholar 

  58. 58.

    Haudry, A. et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45, 891–898 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  60. 60.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10 (2011).

    Article  Google Scholar 

  61. 61.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  63. 63.

    Ashkenazy, H. et al. FastML: a web server for probabilistic reconstruction of ancestral sequences. Nucleic Acids Res. 40, W580–W584 (2012).

    CAS  Article  Google Scholar 

  64. 64.

    Slotte, T. et al. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat. Genet. 45, 831–835 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    CAS  Article  Google Scholar 

  66. 66.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  Article  Google Scholar 

  67. 67.

    Couvreur, T. L. P. et al. Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol. Biol. Evol. 27, 55–71 (2010).

    CAS  Article  Google Scholar 

  68. 68.

    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    CAS  Article  Google Scholar 

  69. 69.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Okamura, M. Nara, T. Manabe, Y. Yamamoto, M. Niidome and M. Ishii for their technical assistance and A. Kawabe and Y. Kato for helpful discussions. This work was supported in part by Grants-in-Aid for Scientific Research on Innovative Areas (23113002, 16H06467 and 16H06464 to S. Takayama; 16H01467 and 18H04776 to S. Fujii; 17H05833 and 18H04813 to T.T. and 16H06469 to K.K.S.), Grants-in-Aid for Scientific Research (25252021 and 16H06380 to S.Takayama and 18H02456 to S. Fujii), Grant-in-Aid for Challenging Exploratory Research (15K14626 to S. Fujii) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Swiss National Science Foundation to K.K.S. and Japan Science and Technology Agency (JST) PRESTO programme (JPMJPR16Q8) to S. Fujii.

Author information

Affiliations

Authors

Contributions

S. Fujii, K.K.S. and S. Takayama conceived the study. S. Fujii, T.T., K.K.S. and S. Takayama wrote the manuscript. S. Fujii conducted most of the experiments and data analysis. T.T. conducted the GWAS and the geographical analysis. H.S.-A., S. Furukawa, W.I. and Y.W. contributed to phenotyping in the GWAS. Y.K. performed the fluorescent pollen experiment. S.I. contributed to the transgenic experiments. S. Tangpranomkorn contributed to the sequence analysis. M.I. performed the microarray analysis and W.I. performed the real-time PCR.

Corresponding authors

Correspondence to Sota Fujii or Seiji Takayama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks Daphne Goring and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Supplementary Tables 1–5, and titles and legends for Supplementary Videos 1 and 2.

Reporting Summary

Supplementary Video 1

Time-lapse imaging analysis of a M. littorea pollen grain attached on a Col-0 stigmatic papilla cell (left) and on a spri1-1 stigmatic papilla cell (right).

Supplementary Video 2

Time-lapse imaging analysis of Col-0 and M. littorea pollen grains adjacently attached on a spri1-2 + SPRI1A stigmatic papilla cell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujii, S., Tsuchimatsu, T., Kimura, Y. et al. A stigmatic gene confers interspecies incompatibility in the Brassicaceae. Nat. Plants 5, 731–741 (2019). https://doi.org/10.1038/s41477-019-0444-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing