Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis

Abstract

Chloroplasts are integral to sensing biotic and abiotic stress in plants, but their role in transducing Ca2+-mediated stress signals remains poorly understood1,2. Here we identify cMCU, a member of the mitochondrial calcium uniporter (MCU) family, as an ion channel mediating Ca2+ flux into chloroplasts in vivo. Using a toolkit of aequorin reporters targeted to chloroplast stroma and the cytosol in cMCU wild-type and knockout lines, we provide evidence that stress-stimulus-specific Ca2+ dynamics in the chloroplast stroma correlate with expression of the channel. Fast downstream signalling events triggered by osmotic stress, involving activation of the mitogen-activated protein kinases (MAPK) MAPK3 and MAPK6, and the transcription factors MYB60 and ethylene-response factor 6 (ERF6), are influenced by cMCU activity. Relative to wild-type plants, cMCU knockouts display increased resistance to long-term water deficit and improved recovery on rewatering. Modulation of stromal Ca2+ in specific processing of stress signals identifies cMCU as a component of plant environmental sensing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cMCU localizes to chloroplasts in Arabidopsis mesophyll cells.
Fig. 2: Recombinant cMCU mediates Ca2+ fluxes in electrophysiological experiments and in a heterologous expression system.
Fig. 3: Monitoring of stromal Ca2+ concentration reveals differential calcium dynamics and signalling in wild-type versus cMCU knockout plants.
Fig. 4: Plants lacking cMCU are drought resistant and recover quickly following rewatering.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Kudla, J. et al. Advances and current challenges in calcium signaling. New Phytol. 218, 414–431 (2018).

    Article  Google Scholar 

  2. Zhu, J. K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

    Article  CAS  Google Scholar 

  3. Leister, D., Wang, L. & Kleine, T. Organellar gene expression and acclimation of plants to environmental stress. Front. Plant Sci. 8, 387 (2017).

    Article  Google Scholar 

  4. Dodd, A. N., Kudla, J. & Sanders, D. The language of calcium signaling. Annu. Rev. Plant Biol. 61, 593–620 (2010).

    Article  CAS  Google Scholar 

  5. Kmiecik, P., Leonardelli, M. & Teige, M. Novel connections in plant organellar signalling link different stress responses and signalling pathways. J. Exp. Bot. 67, 3793–3807 (2016).

    Article  CAS  Google Scholar 

  6. Nomura, H. & Shiina, T. Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. Mol. Plant 7, 1094–1104 (2014).

    Article  CAS  Google Scholar 

  7. Guo, H. et al. Plastid–nucleus communication involves calcium-modulated MAPK signalling. Nat. Commun. 7, 12173 (2016).

    Article  Google Scholar 

  8. Sai, J. & Johnson, C. H. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14, 1279–1291 (2002).

    Article  CAS  Google Scholar 

  9. Stael, S. et al. Plant organellar calcium signalling: an emerging field. J. Exp. Bot. 63, 1525–1542 (2012).

    Article  CAS  Google Scholar 

  10. Hochmal, A. K., Schulze, S., Trompelt, K. & Hippler, M. Calcium-dependent regulation of photosynthesis. Biochim. Biophys. Acta 1847, 993–1003 (2015).

    Article  CAS  Google Scholar 

  11. Loro, G. et al. Chloroplast-specific in vivo Ca2+ imaging using yellow cameleon fluorescent protein sensors reveals organelle-autonomous Ca2+ signatures in the stroma. Plant Physiol. 171, 2317–2330 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sello, S. et al. Dissecting stimulus-specific Ca2+ signals in amyloplasts and chloroplasts of Arabidopsis thaliana cell suspension cultures. J. Exp. Bot. 67, 3965–3974 (2016).

    Article  CAS  Google Scholar 

  13. Nomura, H. et al. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Commun. 3, 926 (2012).

    Article  Google Scholar 

  14. Costa, A., Navazio, L. & Szabo, I. The contribution of organelles to plant intracellular calcium signalling. J. Exp. Bot. 69, 4175–4193 (2018).

    Article  CAS  Google Scholar 

  15. Carraretto, L. et al. Ion channels in plant bioenergetic organelles chloroplast and mitochondria: from molecular identification to function. Mol. Plant 9, 371–395 (2016).

    Article  CAS  Google Scholar 

  16. Carraretto, L. et al. A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342, 114–118 (2013).

    Article  CAS  Google Scholar 

  17. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    Article  Google Scholar 

  18. Teardo, E. et al. Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo. Plant Physiol. 173, 1355–1370 (2017).

    Article  CAS  Google Scholar 

  19. Kreimer, G., Melkonian, M., Holtum, J. A. & Latzko, E. Characterization of calcium fluxes across the envelope of intact spinach chloroplasts. Planta 166, 515–523 (1985).

    Article  CAS  Google Scholar 

  20. Nguyen, N. X. et al. Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature 559, 570–574 (2018).

    Article  CAS  Google Scholar 

  21. Yoo, J. et al. Cryo-EM structure of a mitochondrial calcium uniporter. Science 361, 506–511 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baradaran, R., Wang, C., Siliciano, A. F. & Long, S. B. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature 559, 580–584 (2018).

    Article  CAS  Google Scholar 

  23. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  Google Scholar 

  24. McAinsh, M. R. & Pittman, J. K. Shaping the calcium signature. New Phytol. 181, 275–294 (2009).

    Article  CAS  Google Scholar 

  25. Mehlmer, N. et al. A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. J. Exp. Bot. 63, 1751–1761 (2012).

    Article  CAS  Google Scholar 

  26. Sello, S. et al. Chloroplast Ca2+ fluxes into and across thylakoids revealed by thylakoid-targeted aequorin probes. Plant Physiol. 177, 38–51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kazama, D., Kurusu, T., Mitsuda, N., Ohme-Takagi, M. & Tada, Y. Involvement of elevated proline accumulation in enhanced osmotic stress tolerance in Arabidopsis conferred by chimeric repressor gene silencing technology. Plant Signal. Behav. 9, e28211 (2014).

    Article  Google Scholar 

  28. Shkolnik, D., Nuriel, R., Bonza, M. C., Costa, A. & Fromm, H. MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+ signal essential for root water tracking in Arabidopsis. Proc. Natl Acad. Sci. USA 115, 8031–8036 (2018).

    Article  CAS  Google Scholar 

  29. Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867 (2017).

    Article  CAS  Google Scholar 

  30. de Zelicourt, A., Colcombet, J. & Hirt, H. The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. 21, 677–685 (2016).

    Article  Google Scholar 

  31. Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T. & Shinozaki, K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24, 655–665 (2000).

    Article  CAS  Google Scholar 

  32. Lee, K. et al. Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J. Biol. Chem. 283, 23581–23588 (2008).

    Article  CAS  Google Scholar 

  33. Brock, A. K. et al. The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiol. 153, 1098–1111 (2010).

    Article  CAS  Google Scholar 

  34. Meng, X. & Zhang, S. MAPK cascades in plant disease resistance signaling. Annu Rev. Phytopathol. 51, 245–266 (2013).

    Article  CAS  Google Scholar 

  35. Vogel, M. O. et al. Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis. Plant Cell 26, 1151–1165 (2014).

    Article  CAS  Google Scholar 

  36. Dubois, M. et al. The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol. 169, 166–179 (2015).

    Article  CAS  Google Scholar 

  37. Sewelam, N. et al. Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS ONE 8, e70289 (2013).

    Article  CAS  Google Scholar 

  38. Cominelli, E. et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr. Biol. 15, 1196–1200 (2005).

    Article  CAS  Google Scholar 

  39. Wang, W. H. et al. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation. Plant J. 86, 132–144 (2016).

    Article  CAS  Google Scholar 

  40. Frank, J. et al. Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. New Phytol. 221, 866–880 (2019).

    Article  CAS  Google Scholar 

  41. Schneider, A. et al. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis. Plant Cell 28, 892–910 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Patron, M. et al. MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell 53, 726–737 (2014).

    Article  CAS  Google Scholar 

  43. Raffaello, A. et al. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32, 2362–2376 (2013).

    Article  CAS  Google Scholar 

  44. Fadouloglou, V. E., Kokkinidis, M. & Glykos, N. M. Determination of protein oligomerization state: two approaches based on glutaraldehyde crosslinking. Anal. Biochem. 373, 404–406 (2008).

    Article  CAS  Google Scholar 

  45. Maruyama, K., Mikawa, T. & Ebashi, S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J. Biochem. 95, 511–519 (1984).

    Article  CAS  Google Scholar 

  46. Wagner, S. et al. The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in Arabidopsis. Plant cell 27, 3190–3212 (2015).

    Article  CAS  Google Scholar 

  47. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  48. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  Google Scholar 

  49. Seigneurin-Berny, D., Salvi, D., Dorne, A. J., Joyard, J. & Rolland, N. Percoll-purified and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. Plant Physiol. Biochem. 46, 951–955 (2008).

    Article  CAS  Google Scholar 

  50. Brini, M. et al. Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). A critical evaluation. J. Biol. Chem. 270, 9896–9903 (1995).

    Article  CAS  Google Scholar 

  51. Ottolini, D., Cali, T. & Brini, M. Methods to measure intracellular Ca2+ fluxes with organelle-targeted aequorin-based probes. Methods Enzymol. 543, 21–45 (2014).

    Article  CAS  Google Scholar 

  52. Flury, P., Klauser, D., Schulze, B., Boller, T. & Bartels, S. The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst. Plant Physiol. 161, 2023–2035 (2013).

    Article  CAS  Google Scholar 

  53. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2\({-\mathrm \Delta\mathrm \Delta}c_T\) method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Weber, D. Leister, A. Costa, G. Finazzi, W. Martin and F. Lo Schiavo for useful discussions. We thank Human Frontiers Science Program (HFSP RG0052 to I.S.), the University of Padova (PRID 2018 prot. BIRD180317 to L.N. and STARS (Supporting Talents in Research project) to L.Carraretto), the MIUR (FFABR 2017 to E.F.), the EU within the Marie-Curie ITN CALIPSO (FP7, Project no. 607607 to U.C.V.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

I.S., L.N., L.Cendron, E.F. and E.T. designed experiments; E.T., L.Carraretto, R.M., E.C., M.V., M.F., L.M. and S.D.B. performed experiments; I.S., L.N., L.Cendron, L.Carraretto, E.F., E.T., T.C. and U.C.V. analysed data; I.S., L.N., L.Cendron, E.F. and E.T. wrote the manuscript. I.S., L.N., E.F., U.C.V. and L.Carraretto acquired funding.

Corresponding authors

Correspondence to Elide Formentin, Lorella Navazio or Ildiko Szabo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Plants thanks Jose Feijo, Simon Stael and Tou Cheu Xiong for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary Video legends, Supplementary Table 1, Supplementary Materials and Methods, and Supplementary References.

Reporting Summary

Supplementary Video 1

Plants stably expressing mitochondrial β-F1-ATPase-EGFP (green) that have been transformed with cMCU::tdTomato (red).

Supplementary Video 2

cMCU::EGFP in epidermal cells stained with TMRM, a dye that accumulates in the mitochondria in a membrane potential-dependent manner

Supplementary Video 3

cMCU::EGFP in epidermal cells.

Supplementary Video 4

cMCU::EGFP in guard cells stained with TMRM (accumulates in mitochondria).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teardo, E., Carraretto, L., Moscatiello, R. et al. A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nat. Plants 5, 581–588 (2019). https://doi.org/10.1038/s41477-019-0434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0434-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing