Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading

A Publisher Correction to this article was published on 16 August 2019

This article has been updated

Abstract

During phloem unloading, multiple cell-to-cell transport events move organic substances to the root meristem. Although the primary unloading event from the sieve elements to the phloem pole pericycle has been characterized to some extent, little is known about post-sieve element unloading. Here, we report a novel gene, PHLOEM UNLOADING MODULATOR (PLM), in the absence of which plasmodesmata-mediated symplastic transport through the phloem pole pericycle–endodermis interface is specifically enhanced. Increased unloading is attributable to a defect in the formation of the endoplasmic reticulum–plasma membrane tethers during plasmodesmal morphogenesis, resulting in the majority of pores lacking a visible cytoplasmic sleeve. PLM encodes a putative enzyme required for the biosynthesis of sphingolipids with very-long-chain fatty acid. Taken together, our results indicate that post-sieve element unloading involves sphingolipid metabolism, which affects plasmodesmal ultrastructure. They also raise the question of how and why plasmodesmata with no cytoplasmic sleeve facilitate molecular trafficking.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification and characterization of plm mutants.
Fig. 2: Molecular characterization of PLM.
Fig. 3: PLM affects sphingolipid biosynthesis.
Fig. 4: GFP unloading into the root tip is enhanced in plm mutants.
Fig. 5: The plm-2 mutant lacks type II plasmodesmata at the PPP–endodermal interface of the unloading zone.

Data availability

All data underlying the findings are available from the corresponding authors on request.

Change history

  • 16 August 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Lucas, W. J. Plasmodesmata: intercellular channels for macromolecular transport in plants. Curr. Opin. Cell Biol. 7, 673–680 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    Kim, I. & Zambryski, P. C. Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr. Opin. Plant Biol. 8, 593–599 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Otero, S., Helariutta, Y. & Benitez-Alfonso, Y. Symplastic communication in organ formation and tissue patterning. Curr. Opin. Plant Biol. 29, 21–28 (2016).

    Article  Google Scholar 

  4. 4.

    Lim, G. H. et al. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19, 541–549 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Yadav, S. R., Yan, D., Sevilem, I. & Helariutta, Y. Plasmodesmata-mediated intercellular signaling during plant growth and development. Front. Plant Sci. 5, 44 (2014).

    Article  Google Scholar 

  6. 6.

    Benitez-Alfonso, Y. et al. Symplastic intercellular connectivity regulates lateral root patterning. Dev. Cell 26, 136–147 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Sivaguru, M. et al. Aluminum-induced 1→3-β-d-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol. 124, 991–1006 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Tylewicz, S. et al. Photoperiodic control of seasonal growth is mediated by ABA acting on cell–cell communication. Science 360, 212–214 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Oparka, K. J. et al. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97, 743–754 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    Tilsner, J., Amari, K. & Torrance, L. Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248, 39–60 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Ding, B., Turgeon, R. & Parthasarathy, M. V. Substructure of freeze-substituted plasmodesmata. Protoplasma 169, 28–41 (1992).

    Article  Google Scholar 

  12. 12.

    Tilsner, J., Nicolas, W., Rosado, A. & Bayer, E. M. Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants. Annu. Rev. Plant Biol. 67, 337–364 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Nicolas, W. J. et al. Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves. Nat. Plants 3, 17082 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Roberts, A. G. & Oparka, K. J. Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 26, 103–124 (2003).

    Article  Google Scholar 

  15. 15.

    Burch-Smith, T. M., Stonebloom, S., Xu, M. & Zambryski, P. C. Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248, 61–74 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Schulz, A. Plasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading in pea root-tips under osmotic-stress. Protoplasma 188, 22–37 (1995).

    Article  Google Scholar 

  17. 17.

    Brunkard, J. O., Runkel, A. M. & Zambryski, P. C. The cytosol must flow: intercellular transport through plasmodesmata. Curr. Opin. Cell Biol. 35, 13–20 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Zavaliev, R., Ueki, S., Epel, B. L. & Citovsky, V. Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma 248, 117–130 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    De Storme, N. & Geelen, D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front. Plant Sci. 5, 138 (2014).

    Article  Google Scholar 

  20. 20.

    Cui, W. & Lee, J. Y. Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nat. Plants 2, 16034 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Fernandez-Calvino, L. et al. Arabidopsis plasmodesmal proteome. PLoS ONE 6, e18880 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Kraner, M. E., Muller, C. & Sonnewald, U. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. Plant J. 92, 696–709 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Diao, M. et al. Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. eLife 7, e36316 (2018).

    Article  Google Scholar 

  24. 24.

    Grison, M. S. et al. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27, 1228–1250 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Zhang, Z. et al. Suppressing a putative sterol carrier gene reduces plasmodesmal permeability and activates sucrose transporter genes during cotton fiber elongation. Plant Cell 29, 2027–2046 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Ross-Elliott, T. J. et al. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 6, e24125 (2017).

    Article  Google Scholar 

  27. 27.

    Vaten, A. et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21, 1144–1155 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Ullman, M. D. & Radin, N. S. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J. Biol. Chem. 249, 1506–1512 (1974).

    CAS  PubMed  Google Scholar 

  29. 29.

    Elmendorf, H. G. & Haldar, K. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes. J. Cell Biol. 124, 449–462 (1994).

    CAS  Article  Google Scholar 

  30. 30.

    Tafesse, F. G., Ternes, P. & Holthuis, J. C. M. The multigenic sphingomyelin synthase family. J. Biol. Chem. 281, 29421–29425 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Voelker, D. R. & Kennedy, E. P. Cellular and enzymic synthesis of sphingomyelin. Biochemistry 21, 2753–2759 (1982).

    CAS  Article  Google Scholar 

  32. 32.

    Huitema, K., van den Dikkenberg, J., Brouwers, J. F. H. M. & Holthuis, J. C. M. Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    Yachi, R. et al. Subcellular localization of sphingomyelin revealed by two toxin-based probes in mammalian cells. Genes Cells 17, 720–727 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, W. et al. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20, 3163–3179 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Knox, K. et al. Putting the squeeze on plasmodesmata: a role for reticulons in primary plasmodesmata formation. Plant Physiol. 168, 1563–1572 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Tolley, N. et al. Transmembrane domain length is responsible for the ability of a plant reticulon to shape endoplasmic reticulum tubules in vivo. Plant J. 64, 411–418 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Markham, J. E. & Jaworski, J. G. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21, 1304–1314 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    Markham, J. E., Li, J., Cahoon, E. B. & Jaworski, J. G. Separation and identification of major plant sphingolipid classes from leaves. J. Biol. Chem. 281, 22684–22694 (2006).

    CAS  Article  Google Scholar 

  39. 39.

    Gronnier, J., Germain, V., Gouguet, P., Cacas, J. L. & Mongrand, S. GIPC: glycosyl inositol phospho ceramides, the major sphingolipids on earth. Plant Signal. Behav. 11, e1152438 (2016).

    Article  Google Scholar 

  40. 40.

    Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    CAS  Article  Google Scholar 

  41. 41.

    Merrill, A. H., Wang, E., Gilchrist, D. G. & Riley, R. T. Fumonisins and other inhibitors of de-novo sphingolipid biosynthesis. Adv. Lipid Res. 26, 215–234 (1993).

    CAS  PubMed  Google Scholar 

  42. 42.

    Markham, J. E. et al. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23, 2362–2378 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Benitez-Alfonso, Y. et al. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc. Natl Acad. Sci. USA 106, 3615–3620 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    Li, W. M. et al. Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice. Int. J. Biol. Sci. 3, 120–128 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    Schneiter, R. et al. A yeast acetyl coenzyme a carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex. Mol. Cell. Biol. 16, 7161–7172 (1996).

    CAS  Article  Google Scholar 

  46. 46.

    Eisenkolb, M., Zenzmaier, C., Leitner, E. & Schneiter, R. A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Mol. Biol. Cell 13, 4414–4428 (2002).

    CAS  Article  Google Scholar 

  47. 47.

    Cacas, J. L. et al. Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiol. 170, 367–384 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Pinto, S. N., Silva, L. C., Futerman, A. H. & Prieto, M. Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. Biochim. Biophys. Acta 1808, 2753–2760 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Obayashi, T. et al. ATTED-II in 2018: a plant coexpression database based on investigation of statistical property of the mutual rank index. Plant Cell Physiol. 59, e3 (2018).

    Article  Google Scholar 

  50. 50.

    Shang, B. S. et al. Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc. Natl Acad. Sci. USA 113, 5101–5106 (2016).

    CAS  Article  Google Scholar 

  51. 51.

    Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS  Article  Google Scholar 

  52. 52.

    Wilke, S. A. et al. Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J. Neurosci. 33, 507–522 (2013).

    CAS  Article  Google Scholar 

  53. 53.

    Furuta, K. M. et al. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345, 933–937 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Belevich, I., Joensuu, M., Kumar, D., Vihinen, H. & Jokitalo, E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol. 14, e1002340 (2016).

    Article  Google Scholar 

  55. 55.

    Nicolas, W. J., Bayer, E. & Brocard, L. Electron tomography to study the three-dimensional structure of plasmodesmata in plant tissues—from high pressure freezing preparation to ultrathin section collection. Bio-protocol 8, e2681 (2018).

    Article  Google Scholar 

  56. 56.

    Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  Article  Google Scholar 

  57. 57.

    Mortimer, J. C. et al. Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis. Plant Cell 25, 1881–1894 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    Bure, C. et al. Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 25, 3131–3145 (2011).

    CAS  Article  Google Scholar 

  59. 59.

    Fang, L. et al. Loss of inositol phosphorylceramide sphingolipid mannosylation induces plant immune responses and reduces cellulose content in Arabidopsis. Plant Cell 28, 2991–3004 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    Welti, R. et al. Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277, 31994–32002 (2002).

    CAS  Article  Google Scholar 

  61. 61.

    Xiao, S. et al. Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22, 1463–1482 (2010).

    CAS  Article  Google Scholar 

  62. 62.

    Zuo, J., Niu, Q. W. & Chua, N. H. Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000).

    CAS  Article  Google Scholar 

  63. 63.

    Melnyk, C. W. Grafting with Arabidopsis thaliana. Methods Mol. Biol. 1497, 9–18 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Finnish Centre of Excellence in Molecular Biology of Primary Producers (Academy of Finland CoE program 2014–2019, decision no. 271832), the Gatsby Foundation (GAT3395/PR3), the National Science Foundation Biotechnology and Biological Sciences Research Council grant (BB/N013158/1), the University of Helsinki (award 799992091), the European Research Council Advanced Investigator Grant SYMDEV (no. 323052) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant no. 772103-BRIDGING to E.M.B.). J.D.P. is funded by a PhD fellowship from the Formation à la Recherche dans l’Industrie et l’Agriculture (grant no. 1.E.096.18), Belgium. This work was also funded as part of the US Department of Energy Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between the Lawrence Berkeley National Laboratory and the US Department of Energy. We thank R. Wightman for assistance with confocal imaging, M. Bourdon for help in conducting immunolocalization and K. Abley for help with the seed germination assay. The SB-EM imaging was supported by the Biocenter Finland (I.B. and E.J.), and we thank M. Lindman, A. Salminen and M. Veikkolainen for sample preparation for SB-EM. We thank M. Roth and R. Welti for polar lipid analysis, A. Shevchenko and K. Schuchmann for sphingomyelin analysis and P. Dupree for data interpretation. Electron tomography was performed at the plant pole of the Bordeaux Imaging Centre (http://www.bic.u-bordeaux.fr/). The Region Aquitaine also supported the acquisition of the electron microscope (grant no. 2011 13 04 007 PFM), and FranceBioImaging Infrastructure supported the acquisition of the AFS2 and ultra-microtome. The sterol analyses were performed at the Functional Genomic Center of Bordeaux, Metabolome/Lipidome platform (https://metabolome.cgfb.u-bordeaux.fr/en), funded by Grant MetaboHUB-ANR-11-INBS-0010.

Author information

Affiliations

Authors

Contributions

D.Y., A.P., S.R.Y., E.M.B. and Y.H. designed the experiments. D.Y., A.P., S.R.Y., E.M.B. and Y.H. wrote the manuscript with input from other authors. D.Y., S.R.Y., A.V. and J.-Y.L. generated the Arabidopsis lines. S.R.Y., A.V., L.K. and S.e.-S. carried out the suppressor screen and gene mapping. D.Y., S.R.Y. and A.P. performed the growth phenotype analysis. D.Y. and J.E.M. carried out the sphingolipid profiles, and M.S.G. carried out the sterol analyses. A.P., W.J.N., J.D.P. and L.B. carried out the electron tomography analysis with support from E.M.B. M.K. provided support for the FRAP experiment. A.P., E.J. and I.B. carried out the SB-EM analysis. G.M.M. and J.M. performed the GIPC glycosylation assay. J.D.P. carried out the transient co-expression assay. The rest of experiments were performed by D.Y.

Corresponding authors

Correspondence to Emmanuelle M. Bayer or Ykä Helariutta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17 and Supplementary Tables 1–3.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Yadav, S.R., Paterlini, A. et al. Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. Nat. Plants 5, 604–615 (2019). https://doi.org/10.1038/s41477-019-0429-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing