Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Duplication of a domestication locus neutralized a cryptic variant that caused a breeding barrier in tomato

An Author Correction to this article was published on 10 July 2019

This article has been updated

Abstract

Genome editing technologies are being widely adopted in plant breeding1. However, a looming challenge of engineering desirable genetic variation in diverse genotypes is poor predictability of phenotypic outcomes due to unforeseen interactions with pre-existing cryptic mutations2,3,4. In tomato, breeding with a classical MADS-box gene mutation that improves harvesting by eliminating fruit stem abscission frequently results in excessive inflorescence branching, flowering and reduced fertility due to interaction with a cryptic variant that causes partial mis-splicing in a homologous gene5,6,7,8. Here, we show that a recently evolved tandem duplication carrying the second-site variant achieves a threshold of functional transcripts to suppress branching, enabling breeders to neutralize negative epistasis on yield. By dissecting the dosage mechanisms by which this structural variant restored normal flowering and fertility, we devised strategies that use CRISPR–Cas9 genome editing to predictably improve harvesting. Our findings highlight the under-appreciated impact of epistasis in targeted trait breeding and underscore the need for a deeper characterization of cryptic variation to enable the full potential of genome editing in agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two QTLs suppress undesirable inflorescence branching in tomato jointless breeding lines.
Fig. 2: A tandem duplication at sb3 underlies suppression of branching.
Fig. 3: Duplication of the weak ej2W allele causes a dose-dependent suppression of undesirable inflorescence branching in the j2 background.
Fig. 4: The sb3 duplication is a rare variant that arose recently in a ‘vintage’ tomato cultivar and was selected to overcome j2 ej2W negative epistasis during the development of large fresh-market varieties.
Fig. 5: The sb3 duplication enables predictable breeding for the jointless trait by genome editing.

Similar content being viewed by others

Data availability

The DNA sequencing data used to map branching QTLs in the S. lycopersicum j2 ej2W × S. lycopersicum Fla.8924 F2 population and the RNA sequencing data of transition and floral meristem stages for S. lycopersicum M82, S. lycopersicum j2 ej2W and S. lycopersicum Fla.8924 has been deposited in SRA (http://ncbi.nlm.nih.gov/sra) under the accession code PRJNA509653.

Source Data files for all main and supplementary figures are available in the online version of the paper. All additional data sets are available from the corresponding author on request.

Change history

  • 10 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Wallace, J. G., Rodgers-Melnick, E. & Buckler, E. S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421–444 (2018).

    Article  CAS  Google Scholar 

  2. Gibson, G., Dworkin, I. & Hall, G. Uncovering cryptic genetic variation. Nat. Rev. Genet. 5, 1–10 (2004).

    Article  Google Scholar 

  3. Paaby, A. B. & Rockman, M. V. Cryptic genetic variation: evolution’s hidden substrate. Nat. Rev. Genet. 15, 247–258 (2014).

    Article  CAS  Google Scholar 

  4. Sackton, T. B. & Hartl, D. L. Genotypic context and epistasis in individuals and populations. Cell 166, 279–287 (2016).

    Article  CAS  Google Scholar 

  5. Reynard, G. B. New source of the j2 gene governing jointless pedicel in tomato. Science 134, 4–6 (1961).

    Article  Google Scholar 

  6. Rick, C. M. A new jointless gene from the Galapagos L. pimpinellifolium. TGC Rep. 6, 23 (1956).

    Google Scholar 

  7. Zahara, M. B. & Scheuerman, R. W. Hand-harvesting jointless vs. jointed-stem tomatoes. Calif. Agric. 42, 14–14 (1988).

    Google Scholar 

  8. Soyk, S. et al. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169, 1142–1155 (2017).

    Article  CAS  Google Scholar 

  9. Alonso-Blanco, C. et al. 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481–491 (2016).

    Article  Google Scholar 

  10. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  11. Aflitos, S. et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 80, 136–148 (2014).

    Article  Google Scholar 

  12. Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014).

    Article  CAS  Google Scholar 

  13. Le Rouzic, A. & Carlborg, Ö. Evolutionary potential of hidden genetic variation. Trends Ecol. Evol. 23, 33–37 (2008).

    Article  Google Scholar 

  14. McGuigan, K. & Sgrò, C. M. Evolutionary consequences of cryptic genetic variation. Trends Ecol. Evol. 24, 305–311 (2009).

    Article  Google Scholar 

  15. Lauter, N. & Doebley, J. Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics 342, 333–342 (2002).

    Google Scholar 

  16. Mcguigan, K., Nishimura, N., Currey, M., Hurwit, D. & Cresko, W. A. Cryptic genetic variation and body size evolution in threespine stickleback. Evolution 65, 1203–1211 (2011).

    Article  Google Scholar 

  17. Pires, N. D. et al. Genetic variation involved in the paternal regulation of seed development. PLoS Genet. 12, e1005806 (2016).

    Article  Google Scholar 

  18. Monniaux, M. et al. The role of APETALA1 in petal number robustness. eLife 7, 1–22 (2018).

    Article  Google Scholar 

  19. Reynard, G. B. New source of the j2 gene governing jointless pedicel in tomato. Science 134, 2102 (1961).

    Article  CAS  Google Scholar 

  20. Boiteux, L. S., Giordano, L., de, B., Furumoto, O. & Aragao, F. A. S. Estimating the pleiotropic effect of the jointless-2 gene on the processing and agronomic traits of tomato by using near-isogenic lines. Plant Breed. 114, 457–459 (1995).

    Article  Google Scholar 

  21. Lee, T. G., Shekasteband, R., Menda, N., Mueller, L. A. & Hutton, S. F. Molecular markers to select for the j-2 –mediated jointless pedicel in tomato. HortScience 53, 153–158 (2018).

    Article  CAS  Google Scholar 

  22. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article  CAS  Google Scholar 

  23. Bemer, M. et al. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24, 4437–4451 (2012).

    Article  CAS  Google Scholar 

  24. Park, S. J., Jiang, K., Schatz, M. C. & Lippman, Z. B. Rate of meristem maturation determines inflorescence architecture in tomato. Proc. Natl Acad. Sci. USA 109, 639–644 (2012).

    Article  CAS  Google Scholar 

  25. Park, S. J., Eshed, Y. & Lippman, Z. B. Meristem maturation and inflorescence architecture - lessons from the Solanaceae. Curr. Opin. Plant Biol. 17, 70–77 (2014).

    Article  Google Scholar 

  26. Kyozuka, J., Tokunaga, H. & Yoshida, A. Control of grass inflorescence form by the fine-tuning of meristem phase change. Curr. Opin. Plant Biol. 17, 110–115 (2014).

    Article  CAS  Google Scholar 

  27. Lemmon, Z. H. et al. The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Res. 26, 1676–1686 (2016).

    Article  CAS  Google Scholar 

  28. Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018).

    Article  CAS  Google Scholar 

  29. Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 1–11 (2017).

    Article  Google Scholar 

  30. Blanca, J. et al. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genom. 16, 257 (2015).

    Article  Google Scholar 

  31. Rick, C. M. The tomato. Sci. Am. 239, 76–87 (1978).

    Article  Google Scholar 

  32. Brooks, C., Nekrasov, V., Lippman, Z. B. & Van Eck, J. Efficient gene editing in tomato in the first generation using the CRISPR/Cas9 system. Plant Physiol. 166, 1292–1297 (2014).

    Article  Google Scholar 

  33. Scott, J. W. Fla. 7946 tomato breeding line resistant to Fusarium oxysporum f.sp. lycopersici races 1, 2, and 3. HortScience 39, 440–441 (2004).

    Article  Google Scholar 

  34. Scott, J. W., Hutton, S. F. & Freeman, J. H. Fla. 8638B and Fla. 8624 tomato breeding lines with begomovirus resistance genes Ty-5 plus Ty-6 and Ty-6, respectively. HortScience 50, 1405–1407 (2015).

    Article  CAS  Google Scholar 

  35. Lye, Z. N. & Purugganan, M. D. Copy number variation in domestication. Trends Plant Sci. 24, 352–365 (2019).

    Article  CAS  Google Scholar 

  36. Maron, L. G. et al. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc. Natl Acad. Sci. USA 110, 5241–5246 (2013).

    Article  CAS  Google Scholar 

  37. Wang, Y. et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944–948 (2015).

    Article  CAS  Google Scholar 

  38. Würschum, T., Boeven, P. H. G., Langer, S. M., Longin, C. F. H. & Leiser, W. L. Multiply to conquer: copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet. 16, 1–8 (2015).

    Article  Google Scholar 

  39. Gresham, D. et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 4, e1000303 (2008).

    Article  Google Scholar 

  40. Farslow, J. C. et al. Rapid Increase in frequency of gene copy-number variants during experimental evolution in Caenorhabditis elegans. BMC Genom. 16, 1–18 (2015).

    Article  Google Scholar 

  41. Debolt, S. Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol. Evol. 2, 441–453 (2010).

    Article  Google Scholar 

  42. Vlad, D. et al. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343, 780–783 (2014).

    Article  CAS  Google Scholar 

  43. Vuolo, F. et al. Coupled enhancer and coding sequence evolution of a homeobox gene shaped leaf diversity. Genes Dev. 30, 2370–2375 (2016).

    Article  CAS  Google Scholar 

  44. Hickey, J. M., Chiurugwi, T., Mackay, I. & Powell, W. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat. Genet. 49, 1297–1303 (2017).

    Article  CAS  Google Scholar 

  45. Hou, J., van Leeuwen, J., Andrews, B. J. & Boone, C. Genetic network complexity shapes background-dependent phenotypic expression. Trends Genet. 34, 578–586 (2018).

    Article  CAS  Google Scholar 

  46. Van Leeuwen, J. et al. Exploring genetic suppression interactions on a global scale. Science 354, aag0839 (2016).

    Article  Google Scholar 

  47. Bazakos, C., Hanemian, M., Trontin, C., Jiménez-Goméz, J. M. & Loudet, O. New strategies and tools in quantitative genetics: how to go from the phenotype to the genotype. Annu Rev. Plant Biol. 68, 435–455 (2017).

    Article  CAS  Google Scholar 

  48. Takagi, H. et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74, 174–183 (2013).

    Article  CAS  Google Scholar 

  49. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  51. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  52. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  CAS  Google Scholar 

  53. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  54. Bolger, A. et al. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat. Genet. 46, 1034–1038 (2014).

    Article  CAS  Google Scholar 

  55. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013); http://www.R-project.org/

  56. Tomato Genome Consortium.The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

  57. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  58. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  Google Scholar 

  59. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).

    Article  Google Scholar 

  60. Aflitos, S. A. et al. Introgression browser: high-throughput whole-genome SNP visualization. Plant J. 82,174–182 (2015).

    Article  CAS  Google Scholar 

  61. Dennenmoser, S. et al. Genome-wide patterns of transposon proliferation in an evolutionary young hybrid fish. Mol. Ecol. 28, 1491–1505 (2018).

    Article  Google Scholar 

  62. Schmidt, M. H. et al. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell 29, 2336–2348 (2017).

    Article  CAS  Google Scholar 

  63. Werner, S., Engler, C., Weber, E., Gruetzner, R. & Marillonnet, S. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng. Bugs 3, 38–43 (2012).

    PubMed  Google Scholar 

  64. van Eck, J., Tjahjadi, P. & Keen, M. Agrobacterium tumefaciens-mediated transformation of tomato. Methods Mol. Biol. 1864, 225–234 (2019).

    Article  Google Scholar 

  65. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  66. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  Google Scholar 

  67. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  Google Scholar 

  68. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2016).

    Article  Google Scholar 

  69. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the Lippman laboratory for valuable discussions. We thank A. Krainer, J. Dalrymple, G. Robitaille and J. Kim for technical support. We thank K. Swartwood for assistance with tomato transformation. We thank T. Mulligan, S. Vermylen, A. Krainer, S. Qiao and K. Schlecht, from CSHL, and staff from Cornell University’s Long Island Horticultural Research and Extension Center, for assistance with plant care. We thank S. Goodwin, S. Muller, R. Wappel and E. Ghiban from the CSHL Genome Center for sequencing support. We thank D. Zamir (Hebrew University, Israel) and E. van der Knaap (University of Georgia) for providing seed. This research was supported by an EMBO Long-Term Fellowship (no. ALTF 1589-2014) to S.S., a National Science Foundation Postdoctoral Research Fellowship in Biology Grant (no. IOS-1523423) to Z.H.L., a National Institute of Health Research Project with Complex Structure Cooperative Agreement (3UM1HG008898-01S2) to F.J.S., the ANR grant tomaTE (no. ANR-17-CE20-0024-02) to J.M.J.-G., a Research Grant from BARD (no. IS-4818-15), the United States–Israel Binational Agricultural Research and Development Fund, to Z.B.L., an Agriculture and Food Research Initiative competitive grant no. 2016-67013-24452 of the USDA National Institute of Food and Agriculture to S.H and Z.B.L. and the National Science Foundation Plant Genome Research Program (no. IOS-1732253) to J.V.E., M.C.S. and Z.B.L.

Author information

Authors and Affiliations

Authors

Contributions

S.S., Z.H.L, F.J.S., J.M.J.-G., S.H., J.V.E., M.C.S. and Z.B.L. designed and planned experiments. S.S., Z.H.L, F.J.S., J.M.J.-G., S.H. and Z.B.L. performed experiments and collected the data. S.S., Z.H.L, F.J.S., J.M.J.-G., M.A., M.C.S. and Z.B.L. analysed the data. S.S., Z.H.L. and Z.B.L. designed the research. S.S. and Z.B.L. wrote the paper with the input from all authors.

Corresponding authors

Correspondence to Sebastian Soyk or Zachary B. Lippman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Plants thanks Allen Van Deynze, Jianbing Yan and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5 and Supplementary References.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–4.

Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soyk, S., Lemmon, Z.H., Sedlazeck, F.J. et al. Duplication of a domestication locus neutralized a cryptic variant that caused a breeding barrier in tomato. Nat. Plants 5, 471–479 (2019). https://doi.org/10.1038/s41477-019-0422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0422-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research