Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered PPR proteins as inducible switches to activate the expression of chloroplast transgenes

Abstract

The engineering of plant genomes presents exciting opportunities to modify agronomic traits and to produce high-value products in plants. Expression of foreign proteins from transgenes in the chloroplast genome offers advantages that include the capacity for prodigious protein output, the lack of transgene silencing and the ability to express multicomponent pathways from polycistronic mRNA. However, there remains a need for robust methods to regulate plastid transgene expression. We designed orthogonal activators that boost the expression of chloroplast transgenes harbouring cognate cis-elements. Our system exploits the programmable RNA sequence specificity of pentatricopeptide repeat proteins and their native functions as activators of chloroplast gene expression. When expressed from nuclear transgenes, the engineered proteins stimulate the expression of plastid transgenes by up to ~40-fold, with maximal protein abundance approaching that of Rubisco. This strategy provides a means to regulate and optimize the expression of foreign genes in chloroplasts and to avoid deleterious effects of their products on plant growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental strategy.
Fig. 2: Quantitative relationship between PPR10GG expression and the expression of plastid GFP reporters with the GG cis-element.
Fig. 3: Specificity of PPR10GG and PPR10AA for plastid transgenes harbouring the cognate binding site.
Fig. 4: Ethanol-inducible expression of a plastid GFP reporter in a dicistronic context.
Fig. 5: Effects of PPR10GG on RNA transcripts from the monocistronic and dicistronic chloroplast reporters harbouring the GG cis-element.

Similar content being viewed by others

Data availability

All essential data supporting the findings of this study are available within the paper and its Supplementary Information. Data for additional replicates are available from the corresponding author on request. Nucleotide sequences of the plastid transformation vectors are available under GenBank accessions MK482730 (pAI5), MK482731 (PQY1) and MK482728 (pQY3). Correspondence, requests for plasmids encoding the PPR10 variants and requests for transgenic plants expressing the PPR10 variants should be addressed to A.B. Requests for chloroplast transformation vectors and transplastomic plants lacking the PPR10 transgene should be addressed to P.M. Biological materials will be made available pending on the execution of a Materials Transfer Agreement with the University of Oregon and/or Rutgers University, as applicable.

References

  1. Boynton, J. E. et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534–1538 (1988).

    Article  CAS  Google Scholar 

  2. Svab, Z., Hajdukiewicz, P. & Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl Acad. Sci. USA 87, 8526–8530 (1990).

    Article  CAS  Google Scholar 

  3. Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu. Rev. Plant Biol. 66, 211–241 (2015).

    Article  CAS  Google Scholar 

  4. Ahmad, N., Michoux, F., Lossl, A. G. & Nixon, P. J. Challenges and perspectives in commercializing plastid transformation technology. J. Exp. Bot. 67, 5945–5960 (2016).

    Article  CAS  Google Scholar 

  5. Waheed, M. T., Ismail, H., Gottschamel, J., Mirza, B. & Lossl, A. G. Plastids: the green frontiers for vaccine production. Front. Plant Sci. 6, 1005 (2015).

    Article  Google Scholar 

  6. Oey, M., Lohse, M., Kreikemeyer, B. & Bock, R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 57, 436–445 (2009).

    Article  CAS  Google Scholar 

  7. Fuentes, P. et al. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife 5, e13664 (2016).

    Article  Google Scholar 

  8. Gnanasekaran, T. et al. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. J. Exp. Bot. 67, 2495–2506 (2016).

    Article  CAS  Google Scholar 

  9. Harada, H. et al. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res. 23, 303–315 (2014).

    Article  CAS  Google Scholar 

  10. Bohmert-Tatarev, K., McAvoy, S., Daughtry, S., Peoples, O. P. & Snell, K. D. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol. 155, 1690–1708 (2011).

    Article  CAS  Google Scholar 

  11. Diretto, G. et al. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2, e350 (2007).

    Article  Google Scholar 

  12. Hanson, M. R., Lin, M. T., Carmo-Silva, A. E. & Parry, M. A. Towards engineering carboxysomes into C3 plants. Plant J. 87, 38–50 (2016).

    Article  CAS  Google Scholar 

  13. Malhotra, K. et al. Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells. Mol. Plant 9, 1464–1477 (2016).

    Article  CAS  Google Scholar 

  14. Lossl, A. et al. Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol. 46, 1462–1471 (2005).

    Article  Google Scholar 

  15. Lu, Y., Rijzaani, H., Karcher, D., Ruf, S. & Bock, R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl Acad. Sci. USA 110, E623–E632 (2013).

    Article  Google Scholar 

  16. Scotti, N. & Cardi, T. Transgene-induced pleiotropic effects in transplastomic plants. Biotechnol. Lett. 36, 229–239 (2014).

    Article  CAS  Google Scholar 

  17. Muhlbauer, S. K. & Koop, H. U. External control of transgene expression in tobacco plastids using the bacterial lac repressor. Plant J. 43, 941–946 (2005).

    Article  Google Scholar 

  18. Buhot, L., Horvath, E., Medgyesy, P. & Lerbs-Mache, S. Hybrid transcription system for controlled plastid transgene expression. Plant J. 46, 700–707 (2006).

    Article  CAS  Google Scholar 

  19. Emadpour, M., Karcher, D. & Bock, R. Boosting riboswitch efficiency by RNA amplification. Nucleic Acids Res. 43, e66 (2015).

    Article  Google Scholar 

  20. Barkan, A. & Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415–442 (2014).

    Article  CAS  Google Scholar 

  21. Small, I. & Peeters, N. The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25, 46–47 (2000).

    Article  CAS  Google Scholar 

  22. Barkan, A. et al. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet. 8, e1002910 (2012).

    Article  CAS  Google Scholar 

  23. Shen, C. et al. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat. Commun. 7, 11285 (2016).

    Article  CAS  Google Scholar 

  24. Filipovska, A. & Rackham, O. Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol. Biosyst. 8, 699–708 (2012).

    Article  CAS  Google Scholar 

  25. Kindgren, P., Yap, A., Bond, C. S. & Small, I. Predictable alteration of sequence recognition by RNA editing factors from Arabidopsis. Plant Cell 27, 403–416 (2015).

    Article  CAS  Google Scholar 

  26. Colas des Francs-Small, C., Vincis Pereira Sanglard, L. & Small, I. Targeted cleavage of nad6 mRNA induced by a modified pentatricopeptide repeat protein in plant mitochondria. Commun. Biol. 1, 166 (2018).

    Article  Google Scholar 

  27. Miranda, R. G., McDermott, J. J. & Barkan, A. RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR–RNA interactions. Nucleic Acids Res. 46, 2613–2623 (2018).

    Article  CAS  Google Scholar 

  28. Pfalz, J., Bayraktar, O., Prikryl, J. & Barkan, A. Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J. 28, 2042–2052 (2009).

    Article  CAS  Google Scholar 

  29. Prikryl, J., Rojas, M., Schuster, G. & Barkan, A. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc. Natl Acad. Sci. USA 108, 415–420 (2011).

    Article  CAS  Google Scholar 

  30. Zoschke, R., Watkins, K. & Barkan, A. A rapid microarray-based ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell 25, 2265–2275 (2013).

    Article  CAS  Google Scholar 

  31. Chotewutmontri, P. & Barkan, A. Dynamics of chloroplast translation during chloroplast differentiation in maize. PLoS Genet. 12, e1006106 (2016).

    Article  Google Scholar 

  32. Miranda, R. G., Rojas, M., Montgomery, M. P., Gribbin, K. P. & Barkan, A. RNA-binding specificity landscape of the pentatricopeptide repeat protein PPR10. RNA 23, 586–599 (2017).

    Article  CAS  Google Scholar 

  33. Schoffl, F., Raschke, E. & Nagao, R. T. The DNA sequence analysis of soybean heat-shock genes and identification of possible regulatory promoter elements. EMBO J. 3, 2491–2497 (1984).

    Article  CAS  Google Scholar 

  34. Roslan, H. A. et al. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28, 225–235 (2001).

    Article  CAS  Google Scholar 

  35. Erb, T. J. & Zarzycki, J. A short history of RubisCO: the rise and fall (?) of nature’s predominant CO2 fixing enzyme. Curr. Opin. Biotechnol. 49, 100–107 (2018).

    Article  CAS  Google Scholar 

  36. Hui, M. P., Foley, P. L. & Belasco, J. G. Messenger RNA degradation in bacterial cells. Annu. Rev. Genet. 48, 537–559 (2014).

    Article  CAS  Google Scholar 

  37. Germain, A., Hotto, A. M., Barkan, A. & Stern, D. B. RNA processing and decay in plastids. Wiley Interdiscip. Rev. RNA 4, 295–316 (2013).

    Article  CAS  Google Scholar 

  38. Luro, S., Germain, A., Sharwood, R. E. & Stern, D. B. RNase J participates in a pentatricopeptide repeat protein-mediated 5′ end maturation of chloroplast mRNAs. Nucleic Acids Res. 41, 9141–9151 (2013).

    Article  CAS  Google Scholar 

  39. Beick, S., Schmitz-Linneweber, C., Williams-Carrier, R., Jensen, B. & Barkan, A. The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol. Cell. Biol. 28, 5337–5347 (2008).

    Article  CAS  Google Scholar 

  40. Hanson, M. R., Gray, B. N. & Ahner, B. A. Chloroplast transformation for engineering of photosynthesis. J. Exp. Bot. 64, 731–742 (2013).

    Article  CAS  Google Scholar 

  41. Fuentes, P., Armarego-Marriott, T. & Bock, R. Plastid transformation and its application in metabolic engineering. Curr. Opin. Biotechnol. 49, 10–15 (2018).

    Article  CAS  Google Scholar 

  42. Daniell, H., Chan, H. T. & Pasoreck, E. K. Vaccination via chloroplast genetics: affordable protein drugs for the prevention and treatment of inherited or infectious human diseases. Annu. Rev. Genet. 50, 595–618 (2016).

    Article  CAS  Google Scholar 

  43. Zhou, F., Karcher, D. & Bock, R. Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J. 52, 961–972 (2007).

    Article  CAS  Google Scholar 

  44. Hammani, K., Cook, W. & Barkan, A. RNA binding and RNA remodeling activities of the half-a-tetratricopeptide (HAT) protein HCF107 underlie its effects on gene expression. Proc. Natl Acad. Sci. USA 109, 5651–5656 (2012).

    Article  CAS  Google Scholar 

  45. Legen, J. et al. Stabilization and translation of synthetic operon-derived mRNAs in chloroplasts by sequences representing PPR protein-binding sites. Plant J. 94, 8–21 (2018).

    Article  CAS  Google Scholar 

  46. Ramundo, S. & Rochaix, J. D. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch. Methods Enzymol. 550, 267–281 (2015).

    Article  CAS  Google Scholar 

  47. Boudreau, E., Nickelsen, J., Lemaire, S. D., Ossenbuhl, F. & Rochaix, J. D. The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. EMBO J. 19, 3366–3376 (2000).

    Article  CAS  Google Scholar 

  48. Kuchka, M. R., Goldschmidt-Clermont, M., van Dillewijn, J. & Rochaix, J. D. Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II. Cell 58, 869–876 (1989).

    Article  CAS  Google Scholar 

  49. Yu, Q., Barkan, A. & Maliga, P. Engineered RNA-binding protein for transgene activation in non-green plastids. Nat. Plants https://doi.org/10.1038/s41477-019-0413-0 (2019).

  50. Kuroda, H. & Maliga, P. Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol. 125, 430–436 (2001).

    Article  CAS  Google Scholar 

  51. Shinozaki, K. & Sugiura, M. Sequence of the intercistronic region between the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and coupling factor beta subunit gene. Nucleic Acids Res. 10, 4923–4934 (1982).

    Article  CAS  Google Scholar 

  52. Lutz, K. A., Svab, Z. & Maliga, P. Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat. Protoc. 1, 900–910 (2006).

    Article  CAS  Google Scholar 

  53. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

    Article  CAS  Google Scholar 

  54. Werner, S., Breus, O., Symonenko, Y., Marillonnet, S. & Gleba, Y. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc. Natl Acad. Sci. USA 108, 14061–14066 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Belcher (University of Oregon) for assistance propagating tobacco and for help preparing figures, and to A. Ioannou and T. Tungsuchat Huang (Rutgers University) for their contributions to preparing plastid reporter constructs. We also appreciate the generous gifts of vectors from S. Strauss (Oregon State University) and D. Weigel (Max Planck Institute for Developmental Biology). This research was supported by the USDA NIFA Foundational Program Award number 2014-67013-21600 to A.B. and P.M.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and P.M. conceived the study, designed the strategy and supervised the experiments. M.R., Q.Y. and R.W.-C. performed the experiments and interpreted the data. A.B. wrote the manuscript, which was edited by all co-authors.

Corresponding author

Correspondence to Alice Barkan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, M., Yu, Q., Williams-Carrier, R. et al. Engineered PPR proteins as inducible switches to activate the expression of chloroplast transgenes. Nat. Plants 5, 505–511 (2019). https://doi.org/10.1038/s41477-019-0412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0412-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing