Abstract
In several plant species, inflorescence formation is accompanied by stem elongation. Both processes are accelerated in rice upon perception of shortening days. Here, we show that PREMATURE INTERNODE ELONGATION 1 (PINE1), encoding a rice zinc-finger transcription factor, reduces the sensitivity of the stem to gibberellin (GA). The florigens reduce PINE1 expression to increase stem responsiveness to GA and promote flowering. These data indicate the existence of a regulatory network coordinating flowering and GA-dependent growth.
Access options
Subscribe to Journal
Get full journal access for 1 year
$59.00
only $4.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.


Data availability
The RNA-seq data that support the findings of this study have been deposited in the GEO with the series record number GSE90493.
References
- 1.
Brambilla, V. & Fornara, F. J. Integr. Plant Biol. 55, 410–418 (2013).
- 2.
Zhao, J. et al. New Phytol. 208, 936–948 (2015).
- 3.
Taoka, K. et al. Nature 476, 332–335 (2011).
- 4.
Kobayashi, K. et al. Plant Cell 24, 1848–1859 (2012).
- 5.
Tamaki, S. et al. Proc. Natl Acad. Sci. USA 112, E901–E910 (2015).
- 6.
Hedden, P. & Sponsel, V. J. Plant Growth Regul. 34, 740–760 (2015).
- 7.
Spielmeyer, W., Ellis, M. H. & Chandler, P. M. Proc. Natl Acad. Sci. USA 99, 9043–9048 (2002).
- 8.
Harberd, N. P. et al. Nature 400, 256–261 (1999).
- 9.
Sakamoto, T. et al. Nat. Biotechnol. 21, 909–913 (2003).
- 10.
Hedden, P. & Thomas, S. G. Biochem. J. 444, 11–25 (2012).
- 11.
Kaneko, M. et al. Plant J. 35, 104–115 (2003).
- 12.
Furutani, I., Sukegawa, S. & Kyozuka, J. Plant J. 46, 503–511 (2006).
- 13.
Doi, K. et al. Genes Dev. 18, 926–936 (2004).
- 14.
Brambilla, V. et al. Plant Cell 29, 2801–2816 (2017).
- 15.
Miao, J. et al. Cell Res. 23, 1233–1236 (2013).
- 16.
Hoshikawa, K. The Growing Rice Plant (Nobunkyo, 1989).
- 17.
Itoh, J. I., Kitano, H., Matsuoka, M. & Nagato, Y. Plant Cell 12, 2161–2174 (2000).
- 18.
Sentoku, N. et al. Plant Cell 11, 1651–1664 (1999).
- 19.
Tsuda, K., Ito, Y., Sato, Y. & Kurata, N. Plant Cell 23, 4368–4381 (2011).
- 20.
Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M. & Matsuoka, M. Plant Cell 14, 57–70 (2002).
- 21.
Sakamoto, T. et al. Plant Physiol. 125, 1508–1516 (2001).
- 22.
Nagai, K. et al. AoB Plants 6, plu028 (2014).
- 23.
Gómez-Ariza, J. et al. J. Exp. Bot. 66, 2027–2039 (2015).
- 24.
Fornara, F. et al. Plant Physiol. 135, 2207–2219 (2004).
- 25.
Kim, D. et al. Genome Biol. 14, R36 (2013).
- 26.
Langmead, B. & Salzberg, S. L. Nat. Methods 9, 357–359 (2012).
- 27.
Anders, S., Pyl, P. T. & Huber, W. Bioinformatics 31, 166–169 (2015).
- 28.
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. Bioinformatics 26, 139–140 (2010).
- 29.
Gentleman, R. C. et al. Genome Biol. 5, R80 (2004).
- 30.
Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Nat. Protoc. 8, 1551–1566 (2013).
- 31.
Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Plant J. 6, 271–282 (1994).
- 32.
Wild, M. et al. Dev. Cell 37, 190–200 (2016).
Acknowledgements
We are grateful to S. Tamaki for technical assistance with some experiments. The pACTIN vector was kindly provided by L. Dreni (IBMCP, CSIC, University of Valencia, Valencia) and the CRISPR–Cas9 vector by L.-J. Qu (Peking University and National Plant Gene Research Center, Beijing). We thank A. Costa and the NOLIMITS microscopy facility for technical support. This work was supported by an ERC Starting Grant (no. 260963) to F.F.
Author information
Affiliations
Contributions
J.G.-A., V.B., G.V., M.L., M.C., R.S. and F.G. performed the experiments, generated and analysed the transgenic plants and performed the hormone treatments. R.C. analysed the RNA-seq data. E.Carrera and I.L.D. quantified the bioactive GAs. E.Caporali performed the scanning electron microscopy. F.F. and J.G.-A. conceived the project and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Journal peer review information Nature Plants thanks Junko Kyozuka and other anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1–10 and Supplementary Table 1.
Dataset S1
RNA-seq of Nipponbare and T65 shoot apices during meristem commitment.
Rights and permissions
About this article
Cite this article
Gómez-Ariza, J., Brambilla, V., Vicentini, G. et al. A transcription factor coordinating internode elongation and photoperiodic signals in rice. Nat. Plants 5, 358–362 (2019). https://doi.org/10.1038/s41477-019-0401-4
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley
Journal of Experimental Botany (2021)
-
A Cys2/His2 Zinc Finger Protein Acts as a Repressor of the Green Revolution Gene SD1/OsGA20ox2 in Rice (Oryza sativa L.)
Plant and Cell Physiology (2021)
-
What is going on with the hormonal control of flowering in plants?
The Plant Journal (2021)
-
OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem
New Phytologist (2021)
-
Moving on up – controlling internode growth
New Phytologist (2020)