Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane


Little is known about how the photosynthetic machinery is arranged in time and space during the biogenesis of thylakoid membranes. Using in situ cryo-electron tomography to image the three-dimensional architecture of the cyanobacterium Synechocystis, we observed that the tips of multiple thylakoids merge to form a substructure called the ‘convergence membrane’. This high-curvature membrane comes into close contact with the plasma membrane at discrete sites. We generated subtomogram averages of 70S ribosomes and array-forming phycobilisomes, then mapped these structures onto the native membrane architecture as markers for protein synthesis and photosynthesis, respectively. This molecular localization identified two distinct biogenic regions in the thylakoid network: thylakoids facing the cytosolic interior of the cell that were associated with both marker complexes, and convergence membranes that were decorated by ribosomes but not phycobilisomes. We propose that the convergence membranes perform a specialized biogenic function, coupling the synthesis of thylakoid proteins with the integration of cofactors from the plasma membrane and the periplasmic space.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: In situ cryo-ET of wild-type Synechocystis cells showing the heterogeneity of membrane architecture at thylakoid convergence zones.
Fig. 2: Thylapse gallery.
Fig. 3: Native in situ structure of the Synechocystis phycobilisome array.
Fig. 4: Phycobilisome arrays are bound to PSII.
Fig. 5: Native in situ structures of Synechocystis cytosolic ribosomes.
Fig. 6: Concentrations of phycobilisomes and membrane-associated ribosomes at different membrane regions of Synechocystis.

Data availability

Subtomogram averages have been deposited in the Electron Microscopy Data Bank (EMD-4599 to EMD-4602), along with the tomograms shown in Fig. 1a,d (EMD-4603 and EMD-4604). Additional data that support the findings of this study are available from the corresponding authors upon request.


  1. 1.

    Nelson, N. & Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84, 659–683 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Eberhard, S., Finazzi, G. & Wollmann, F.-A. The dynamics of photosynthesis. Annu. Rev. Genet. 42, 463–515 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Umena, Y., Kawakami, K., Shen, J. R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Hasan, S. S., Yamashita, E., Baniulis, D. & Cramer, W. A. Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc. Natl Acad. Sci. USA 110, 4297–4302 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    Heinz, S., Liauw, P., Nickelsen, J. & Nowaczyk, M. Analysis of photosystem II biogenesis in cyanobacteria. Biochim. Biophys. Acta 1857, 274–287 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Nixon, P. J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Nickelsen, J. & Rengstl, B. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609–635 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Komenda, J., Sobotka, R. & Nixon, P. J. Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 15, 245–251 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Rast, A., Rengstl, B., Heinz, S., Klingl, A. & Nickelsen, J. The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp. PCC 6803, during photosystem II assembly and repair. Front. Plant Sci. 7, 605 (2016).

    Article  Google Scholar 

  11. 11.

    Sacharz, J. et al. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol. Microbiol. 96, 448–462 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Stengel, A. et al. Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis. Plant Cell 24, 660–675 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Liberton, M., Howard Berg, R., Heuser, J., Roth, R. & Pakrasi, H. B. Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227, 129–138 (2006).

    Article  Google Scholar 

  14. 14.

    Nierzwicki-Bauer, S. A., Balkwill, D. L. & Stevens, S. E. Three-dimensional ultrastructure of a unicellular cyanobacterium. J. Cell Biol. 97, 713–722 (1983).

    CAS  Article  Google Scholar 

  15. 15.

    van de Meene, A. M., Hohmann-Marriott, M. F., Vermaas, W. F. & Roberson, R. W. The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch. Microbiol. 184, 259–270 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Armbruster, U. et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661–2678 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Heinz, S. et al. Thylakoid membrane architecture in Synechocystis depends on CurT, a homolog of the granal CURVATURE THYLAKOID1 proteins. Plant Cell 28, 2238–2260 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Kunkel, D. D. Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system. Arch. Microbiol. 133, 97–99 (1982).

    Article  Google Scholar 

  19. 19.

    Engel, B. D. et al. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4, e04889 (2015).

    Article  Google Scholar 

  20. 20.

    Tauschel, H. D. & Drews, G. Thylakoidmorphogenese bei Rhodopseudomonas palustris. Archiv Mikrobiologie 59, 381–404 (1967).

    CAS  Article  Google Scholar 

  21. 21.

    Remsen, C. C., Watson, S. W., Waterbury, J. B. & Trüper, H. G. Fine structure of Ectothiorhodospira mobilis Pelsh. J. Bacteriol. 95, 2374–2392 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Noble, J. M. et al. Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria. Mol. Microbiol. 109, 812–825 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Arteni, A. A., Ajlani, G. & Boekema, E. J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim. Biophys. Acta 1787, 272–279 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Chang, L. et al. Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res. 25, 726–737 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Tang, K. et al. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore. Proc. Natl Acad. Sci. USA 112, 15880–15885 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Harris, D., Bar-Zvi, S., Lahav, A., Goldshmid, I. & Adir, N. in Membrane Protein Complexes: Structure and Function Vol. 87 (eds Harris, J. R. & Boekema, E. J.) 57–82 (Springer Singapore, 2018).

  27. 27.

    Rigort, A. et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl Acad. Sci. USA 109, 4449–4454 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Schaffer, M. et al. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol. 197, 73–82 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Asano, S., Engel, B. D. & Baumeister, W. In situ cryo-electron tomography: a post-reductionist approach to structural biology. J. Mol. Biol. 428, 332–343 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA 108, 20248–20253 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl Acad. Sci. USA 111, 15635–15640 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Ortiz, J. O. et al. Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. J. Cell Biol. 190, 613–621 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    Beckert, B. et al. Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization. EMBO J. 36, 2061 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Beckert, B. et al. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nat. Microbiol. 3, 1115–1121 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Flygaard, R. K., Boegholm, N., Yusupov, M. & Jenner, L. B. Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism. Nat. Commun. 9, 4179 (2018).

    Article  Google Scholar 

  37. 37.

    Matzov, D. et al. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus. Nat. Commun. 8, 723 (2017).

    Article  Google Scholar 

  38. 38.

    Nevo, R. et al. Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J. 26, 1467–1473 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Hinterstoisser, B., Cichna, M., Kuntner, O. & Peschek, G. A. Cooperation of plasma and thylakoid membranes for the biosynthesis of chlorophyll in cyanobacteria: the role of the thylakoid centers. J. Plant Physiol. 142, 407–413 (1993).

    CAS  Article  Google Scholar 

  40. 40.

    Frain, K. M., Gangl, D., Jones, A., Zedler, J. A. Z. & Robinson, C. Protein translocation and thylakoid biogenesis in cyanobacteria. Biochim. Biophys. Acta 1857, 266–273 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Zak, E. et al. The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc. Natl Acad. Sci. USA 98, 13443–13448 (2001).

    CAS  Article  Google Scholar 

  42. 42.

    van de Meene, A. M. et al. Gross morphological changes in thylakoid membrane structure are associated with photosystem I deletion in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1818, 1427–1434 (2012).

    Article  Google Scholar 

  43. 43.

    Junglas, B. & Schneider, D. What is Vipp1 good for? Mol. Microbiol. 108, 1–5 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Gutu, A., Chang, F. & O’Shea, E. K. Dynamical localization of a thylakoid membrane binding protein is required for acquisition of photosynthetic competency. Mol. Microbiol. 108, 16–31 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Hennig, R. et al. IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat. Commun. 6, 7018 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Saur, M. et al. A Janus-faced IM30 ring involved in thylakoid membrane fusion is assembled from IM30 tetramers. Structure 25, 1380–1390 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Marx, A. & Adir, N. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim. Biophys. Acta 1827, 311–318 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Glazer, A. N. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14, 47–77 (1985).

    CAS  Article  Google Scholar 

  49. 49.

    Zhang, J. et al. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551, 57–63 (2017).

    Article  Google Scholar 

  50. 50.

    Olive, J., Ajlani, G., Astier, C., Recouvreur, M. & Vernotte, C. Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochimi. Biophys. Acta 1319, 275–282 (1997).

    CAS  Article  Google Scholar 

  51. 51.

    Westermann, M., Neuschaefer-Rube, O., Morschel, E. & Wehrmeyer, W. Trimeric photosystem I complexes exist in vivo in thylakoid membranes of the Synechocystis strain B09201 and differ in absorption characteristics from monomeric photosystem I complexes. J. Plant Physiol. 155, 24–33 (1999).

    CAS  Article  Google Scholar 

  52. 52.

    Giddings, T. H., Wasmann, C. & Staehelin, L. A. Structure of the thylakoids and envelope membranes of the cyanelles of cyanophora paradoxa. Plant Physiol. 71, 409–419 (1983).

    CAS  Article  Google Scholar 

  53. 53.

    MacGregor-Chatwin, C. et al. Lateral segregation of photosystem I in cyanobacterial thylakoids. Plant Cell 29, 1119–1136 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61 (1979).

    Article  Google Scholar 

  55. 55.

    Schaffer, M. et al. Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio Protoc. 5, e1575 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  57. 57.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  Article  Google Scholar 

  59. 59.

    Xiong, Q., Morphew, M. K., Schwartz, C. L., Hoenger, A. H. & Mastronarde, D. N. CTF determination and correction for low dose tomographic tilt series. J. Struct. Biol. 168, 378–387 (2009).

    Article  Google Scholar 

  60. 60.

    Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    Article  Google Scholar 

  61. 61.

    Schur, F. K. et al. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353, 506–508 (2016).

    CAS  Article  Google Scholar 

  62. 62.

    Hrabe, T. et al. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178, 177–188 (2012).

    CAS  Article  Google Scholar 

  63. 63.

    Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  Article  Google Scholar 

  65. 65.

    Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    Villa, E. et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl Acad. Sci. USA 106, 1063–1068 (2009).

    CAS  Article  Google Scholar 

  67. 67.

    Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    CAS  Article  Google Scholar 

  68. 68.

    Chen, Y., Pfeffer, S., Hrabe, T., Schuller, J. M. & Forster, F. Fast and accurate reference-free alignment of subtomograms. J. Struct. Biol. 182, 235–245 (2013).

    Article  Google Scholar 

  69. 69.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  Google Scholar 

Download references


The authors thank W. Baumeister for enabling this project by providing support and instrumentation, D. Tegunov for creating the membranogram software, R. Danev for help with the phase plate, as well as S. Heinz and G. Weiss for discussion. This work was supported by grants awarded to B.D.E. (EN 1194/1-1) and J.N. (NI 390/9-2) by the Deutsche Forschungsgemeinschaft in the context of the Research Unit FOR2092. Additional funding was provided by the Max Planck Society and by LMU Munich’s Institutional Strategy “LMU Excellent” within the framework of the German Excellence Initiative.

Author information




A.R. and M.S. cultured and froze cells. M.S. performed the FIB milling. A.R., M.S., S.A. and B.D.E. acquired the tomograms. A.R. performed all the analyses in the paper, with assistance from the following people: W.W. guided subtomogram averaging using STOPGAP, producing the phycobilisome structure shown in Fig. 3; S.A. guided subtomogram averaging using PyTom, producing the phycobilisome structure shown in Fig. 4; S.P. helped with the averaging and interpretation of the ribosome structure shown in Fig. 5; and F.B. provided additional computational guidance. J.M.P. enabled instrumentation and provided funding. J.N. and B.D.E. provided funding and conceived and supervised the project. A.R., J.N. and B.D.E. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to Jörg Nickelsen or Benjamin D. Engel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Plants thanks Matthew Johnson and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Video Legends.

Reporting Summary

Supplementary Video 1

In situ cryo-ET of the Synechocystis thylakoid convergence zone (overview 1). Accompanies Fig. 1a and b. The movie slices back and forth through the tomographic volume from Fig. 1a, then reveals the 3D segmentation and mapped in macromolecules shown in Fig. 1b. First, the cytosolic ribosomes (grey) are hidden to show the biogenic regions of the thylakoid network (green), decorated with membrane-associated ribosomes (pink). Photosynthetic regions are decorated with phycobilisomes (yellow). Later, the outer membrane (light blue), plasma membrane (dark blue) and associated macromolecules are hidden for a close-up view of the convergence membrane and thylapse contact.

Supplementary Video 2

In situ cryo-ET of the Synechocystis thylakoid convergence zone (overview 2). Accompanies Fig. 1e and f. The movie slices back and forth through the tomographic volume from Fig. 1e, then reveals the 3D segmentation and mapped in macromolecules shown in Fig. 1f. First, the cytosolic ribosomes (grey) are hidden to show the biogenic regions of the thylakoid network (green), decorated with membrane-associated ribosomes (pink). Photosynthetic regions are decorated with phycobilisomes (yellow). Later, the outer membrane (light blue), plasma membrane (dark blue) and associated macromolecules are hidden for a close-up view of the convergence membrane and thylapse contact.

Supplementary Video 3

Close-up views of convergence zone and thylapse architecture. Accompanies Fig. 2. The movie slices back and forth through tomographic volumes corresponding to Fig. 2a,d,g–i,k and l. An extra volume is shown from the Fig. 2k tomogram in a region not displayed in the figure that contains an exemplary convergence membrane, but not a thylapse. For each volume, it is indicated whether defocus or the Volta phase plate was used to generate contrast.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rast, A., Schaffer, M., Albert, S. et al. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 5, 436–446 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing