Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantifying impacts of enhancing photosynthesis on crop yield


Enhancing photosynthesis is widely accepted as critical to advancing crop yield. However, yield consequences of photosynthetic manipulation are confounded by feedback effects arising from interactions with crop growth, development dynamics and the prevailing environment. Here, we developed a cross-scale modelling capability that connects leaf photosynthesis to crop yield in a manner that addresses the confounding factors. The model was validated using data on crop biomass and yield for wheat and sorghum from diverse field experiments. Consequences for yield were simulated for major photosynthetic enhancement targets related to leaf CO2 and light energy capture efficiencies, and for combinations of these targets. Predicted impacts showed marked variation and were dependent on the photosynthetic enhancement, crop type and environment, especially the degree of water limitation. The importance of interdependencies operating across scales of biological organization was highlighted, as was the need to increase understanding and modelling of the photosynthesis–stomatal conductance link to better quantify impacts of enhancing photosynthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cross-scale modelling framework connecting the diurnal canopy photosynthesis–stomatal conductance module with crop growth and development models.
Fig. 2: Simulated diurnal responses of C3 and C4 CO2 assimilation (A), hourly transpiration (Thr) rates and stomatal conductance for water vapour (gsH2O) for non-limiting and limiting water situations.
Fig. 3: Predicted crop biomass and yield for C3 wheat and C4 sorghum plotted against field-observed data from a diverse validation set of detailed field experiments12,18.
Fig. 4: Baseline simulation of C3 wheat and C4 sorghum yield using 116 years of available weather data.

Data availability

The data that support the findings of this study can be found in the related cited articles and/or from the corresponding author upon reasonable request.

Code availability

The compiled code and files used in the validation, baseline and photosynthetic manipulation simulations are freely available for download at


  1. 1.

    Long, S. P., Marshall-Colon, A. & Zhu, X.-G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Parry, M. A. J. et al. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 62, 453–467 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    von Caemmerer, S. & Evans, J. R. Enhancing C3 photosynthesis. Plant Physiol. 154, 589–592 (2010).

    Article  Google Scholar 

  5. 5.

    von Caemmerer, S. & Furbank, R. T. Strategies for improving C4 photosynthesis. Curr. Opin. Plant Biol. 31, 125–134 (2016).

    Article  Google Scholar 

  6. 6.

    Wu, A., Doherty, A., Farquhar, G. D. & Hammer, G. L. Simulating daily field crop canopy photosynthesis: an integrated software package. Funct. Plant Biol. 45, 362–377 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Sinclair, T. R., Purcell, L. C. & Sneller, C. H. Crop transformation and the challenge to increase yield potential. Trends Plant Sci. 9, 70–75 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    Wu, A., Song, Y., van Oosterom, E. J. & Hammer, G. L. Connecting biochemical photosynthesis models with crop models to support crop improvement. Front. Plant Sci. 7, 1518 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Evans, J. R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol. 72, 297–302 (1983).

    CAS  Article  Google Scholar 

  10. 10.

    van Oosterom, E. J., Borrell, A. K., Chapman, S. C., Broad, I. J. & Hammer, G. L. Functional dynamics of the nitrogen balance of sorghum: I. N demand of vegetative plant parts. Field Crops Res. 115, 19–28 (2010).

    Article  Google Scholar 

  11. 11.

    van Oosterom, E. J., Chapman, S. C., Borrell, A. K., Broad, I. J. & Hammer, G. L. Functional dynamics of the nitrogen balance of sorghum. II. Grain filling period. Field Crops Res. 115, 29–38 (2010).

    Article  Google Scholar 

  12. 12.

    Hammer, G. L. et al. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 61, 2185–2202 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Robertson, M. J., Fukai, S., Ludlow, M. M. & Hammer, G. L. Water extraction by grain sorghum in a sub-humid environment. I. Analysis of the water extraction pattern. Field Crops Res. 33, 81–97 (1993).

    Article  Google Scholar 

  14. 14.

    Hammer, G. L. et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci. 49, 299–312 (2009).

    Article  Google Scholar 

  15. 15.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS  Article  Google Scholar 

  16. 16.

    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis Vol. 2 (CSIRO Publishing, 2000).

  17. 17.

    Holzworth, D. P. et al. APSIM—evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350 (2014).

    Article  Google Scholar 

  18. 18.

    Brown, H. E. et al. Plant modelling framework: software for building and running crop models on the APSIM platform. Env. Model. Softw. 62, 385–398 (2014).

    Article  Google Scholar 

  19. 19.

    Evans, J. R. Improving photosynthesis. Plant Physiol. 162, 1780–1793 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Grant, R. F., Peters, D. B., Larson, E. M. & Huck, M. G. Simulation of canopy photosynthesis in maize and soybean. Agric. For. Meteorol. 48, 75–92 (1989).

    Article  Google Scholar 

  21. 21.

    Sinclair, T. R. & Muchow, R. C. Radiation use efficiency. Adv. Agron. 65, 215–265 (1999).

    Article  Google Scholar 

  22. 22.

    Olioso, A., Carlson, T. N. & Brisson, N. Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop. Agric. For. Meteorol. 81, 41–59 (1996).

    Article  Google Scholar 

  23. 23.

    Ghannoum, O. C4 photosynthesis and water stress. Ann. Bot. 103, 635–644 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Ghannoum, O., Evans, J. R. & von Caemmerer, S. in C 4 Photosynthesis and Related CO 2 Concentrating Mechanisms (eds Raghavendra, A. S. & Sage, R. F.) 129–146 (Springer, 2011).

  25. 25.

    Ball, J. T., Woodrow, I. & Berry, J. in Progress in Photosynthesis Research (ed. Biggins, J.) Ch. 48 (Martinus Nijhoff Publishers, 1987).

  26. 26.

    Yin, X. & Struik, P. C. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS. J. Exp. Bot. 68, 2345–2360 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Amir, J. & Sinclair, T. R. A model of water limitation on spring wheat growth and yield. Field Crops Res. 28, 59–69 (1991).

    Article  Google Scholar 

  28. 28.

    von Caemmerer, S. et al. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J. Exp. Bot. 55, 1157–1166 (2004).

    Article  Google Scholar 

  29. 29.

    Fujita, T., Noguchi, K. & Terashima, I. Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. New Phytol. 199, 395–406 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Mott, K. A. & Peak, D. Effects of the mesophyll on stomatal responses in amphistomatous leaves. Plant Cell Environ. 41, 2835–2843 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    McGrath, J. M. & Long, S. P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol. 164, 2247 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Sinclair, T. R. Is transpiration efficiency a viable plant trait in breeding for crop improvement? Funct. Plant Biol. 39, 359–365 (2012).

    Article  Google Scholar 

  33. 33.

    Flexas, J. et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39, 965–982 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Hammer, G. L. & Wright, G. C. A theoretical-analysis of nitrogen and radiation effects on radiation use efficiency in peanut. Aust. J. Agric. Res. 45, 575–589 (1994).

    Article  Google Scholar 

  35. 35.

    de Pury, D. G. G. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).

    Article  Google Scholar 

  36. 36.

    Duncan, W. G., Loomis, R. S., Williams, W. A. & Hanau, R. A model for simulating photosynthesis in plant communities. Hilgardia 38, 181–205 (1967).

    Article  Google Scholar 

  37. 37.

    Messina, C., Hammer, G., Dong, Z. S., Podlich, D. & Cooper, M. in Crop Physiology: Applications for Genetic Improvement and Agronomy (eds Sadras, V. & Calderini, D.) 235–265 (Elsevier, 2009).

  38. 38.

    Ritchie, J. T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8, 1204–1213 (1972).

    Article  Google Scholar 

  39. 39.

    Wong, S. C., Cowan, I. R. & Farquhar, G. D. Leaf conductance in relation to assimilation in Eucalyptus pauciflora Sieb. ex Spreng—influence of irradiance and partial pressure of carbon dioxide. Plant Physiol. 62, 670–674 (1978).

    CAS  Article  Google Scholar 

  40. 40.

    Wong, S. C., Cowan, I. R. & Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 282, 424–426 (1979).

    Article  Google Scholar 

  41. 41.

    Wolz, K. J., Wertin, T. M., Abordo, M., Wang, D. & Leakey, A. D. B. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nat. Ecol. Evol. 1, 1292–1298 (2017).

    Article  Google Scholar 

  42. 42.

    Leakey, A. D. B. et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol. 140, 779–790 (2006).

    CAS  Article  Google Scholar 

  43. 43.

    Pengelly, J. J. L. et al. Functional analysis of corn husk photosynthesis. Plant Physiol. 156, 503 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    von Caemmerer, S. & Farquhar, G. D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387 (1981).

    Article  Google Scholar 

  45. 45.

    McPherson, H. & Slatyer, R. Mechanisms regulating photosynthesis in Pennisetum typhoides. Aust. J. Biol. Sci. 26, 329–340 (1973).

    CAS  Article  Google Scholar 

  46. 46.

    Yamori, W., Nagai, T. & Makino, A. The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ. 34, 764–777 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Braune, H., Mueller, J. & Diepenbrock, W. Integrating effects of leaf nitrogen, age, rank, and growth temperature into the photosynthesis-stomatal conductance model LEAFC3-N parameterised for barley (Hordeum vulgare L.). Ecol. Model. 220, 1599–1612 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Sinclair, T. R. & Horie, T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency—a review. Crop Sci. 29, 90–98 (1989).

    Article  Google Scholar 

  49. 49.

    Gifford, R. M. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct. Plant Biol. 30, 171–186 (2003).

    Article  Google Scholar 

  50. 50.

    Probert, M. E., Dimes, J. P., Keating, B. A., Dalal, R. C. & Strong, W. M. APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agric. Syst. 56, 1–28 (1998).

    Article  Google Scholar 

  51. 51.

    Lin, M. T., Occhialini, A., Andralojc, P. J., Parry, M. A. J. & Hanson, M. R. A faster Rubisco with potential to increase photosynthesis in crops. Nature 513, 547–550 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Simkin, A. J., McAusland, L., Lawson, T. & Raines, C. A. Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol. 175, 134–145 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Jahan, E., Amthor, J. S., Farquhar, G. D., Trethowan, R. & Barbour, M. M. Variation in mesophyll conductance among Australian wheat genotypes. Funct. Plant Biol. 41, 568–580 (2014).

    Article  Google Scholar 

  54. 54.

    Ubierna, N., Gandin, A., Boyd, R. A. & Cousins, A. B. Temperature response of mesophyll conductance in three C4 species calculated with two methods: 18O discrimination and in vitro V pmax. New Phytol. 214, 66–80 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    von Caemmerer, S. & Evans, J. R. Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ. 38, 629–637 (2015).

    Article  Google Scholar 

  56. 56.

    Flexas, J. et al. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193, 70–84 (2012).

    Article  Google Scholar 

  57. 57.

    Flexas, J. et al. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J. 48, 427–439 (2006).

    CAS  Article  Google Scholar 

Download references


This research was conducted by the Australian Research Council Centre of Excellence for Translational Photosynthesis (CE1401000015) and funded by the Australian Government.

Author information




A.W., G.L.H., S.v.C. and G.D.F. designed the study and contributed to the development of the cross-scale model, A.W. constructed the model and A.D. engineered the software. A.W. undertook model testing and refinement. A.W., G.L.H., S.v.C. and G.D.F. undertook analysis of simulation results and contributed to writing and revising the paper.

Corresponding author

Correspondence to Alex Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1 and 2, Supplementary Tables 1–7, Supplementary Figures 3–5, Supplementary Table 8 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, A., Hammer, G.L., Doherty, A. et al. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 5, 380–388 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing