Perspective | Published:

Considering weed management as a social dilemma bridges individual and collective interests


Weeds pose severe threats to agricultural and natural landscapes worldwide. One major reason for the failure to effectively manage weeds at landscape scales is that current Best Management Practice guidelines, and research on how to improve such guidelines, focus too narrowly on property-level management decisions. Insufficiently considered are the aggregate effects of individual actions to determine landscape-scale outcomes, or whether there are collective practices that would improve weed management outcomes. Here, we frame landscape-scale weed management as a social dilemma, where trade-offs occur between individual and collective interests. We apply a transdisciplinary system approach—integrating the perspectives of ecologists, evolutionary biologists and agronomists into a social science theory of social dilemmas—to four landscape-scale weed management challenges: (i) achieving plant biosecurity, (ii) preventing weed seed contamination, (iii) maintaining herbicide susceptibility and (iv) sustainably using biological control. We describe how these four challenges exhibit characteristics of ‘public good problems’, wherein effective weed management requires the active contributions of multiple actors, while benefits are not restricted to these contributors. Adequate solutions to address these public good challenges often involve a subset of the eight design principles developed by Elinor Ostrom for ‘common pool social dilemmas’, together with design principles that reflect the public good nature of the problems. This paper is a call to action for scholars and practitioners to broaden our conceptualization and approaches to weed management problems. Such progress begins by evaluating the public good characteristics of specific weed management challenges and applying context-specific design principles to realize successful and sustainable weed management.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Williamson, M. Biological Invasions (Springer, 1996).

  2. 2.

    Parker, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19 (1999).

  3. 3.

    Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. S. 41, 59–80 (2010).

  4. 4.

    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).

  5. 5.

    DiTomaso, J. M. Invasive weeds in rangelands: species, impacts, and management. Weed Sci. 48, 255–265 (2000).

  6. 6.

    Norsworthy, J. K. et al. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 60, 31–62 (2012).

  7. 7.

    Gill, N., Graham, S., Cross, R. & Taylor, E. Weed hygiene practices in rural industries and public land management: variable knowledge, patchy implementation, inconsistent coordination. J. Environ. Manage. 223, 140–149 (2018).

  8. 8.

    Panetta, F. D. Weed eradication feasibility: lessons of the 21st century. Weed Res. 55, 226–238

  9. 9.

    Hicks, H. L. et al. The factors driving evolved herbicide resistance at a national scale. Nat. Ecol. Evol. 2, 529–536 (2018).

  10. 10.

    Coutts, S. R., Yokomizo, H. & Buckley, Y. M. The behaviour of multiple independent managers and ecological traits interact to determine prevalence of weeds. Ecol. Appl. 23, 523–536 (2013).

  11. 11.

    Ervin, D. E. & Frisvold, G. B. Community-based approaches to herbicide-resistant weed management: lessons from science and practice. Weed Sci. 64, 609–626 (2016).

  12. 12.

    Graham, S. A new perspective on the trust-power nexus from rural Australia. J. Rural Stud. 36, 87–98 (2014).

  13. 13.

    Jussaume, R. A. & Ervin, D. Understanding weed resistance as a wicked problem to improve weed management decisions. Weed Sci. 64, 559–569 (2016).

  14. 14.

    Gould, F., Brown, S. Z. & Kuzma, J. Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018).

  15. 15.

    Ma, Z., Clarke, M. & Church, S. Insights into individual and cooperative invasive plant management on family forestlands. Land Use Policy 75, 682–693 (2018).

  16. 16.

    Cox, M., Arnold, G. & Villamayor Tomás, S. A review of design principles for community-based natural resource management. Ecol. Soc. 15, 38 (2010).

  17. 17.

    Wilson, D. S., Ostrom, E. & Cox, M. E. Generalizing the core design principles for the efficacy of groups. J. Econ. Behav. Organ. 90, S21–S32 (2013).

  18. 18.

    Waage, J. K. & Mumford, J. D. Agricultural biosecurity. Philos. T. Roy. Soc. B 363, 863–876 (2008).

  19. 19.

    Delouche, J. C. et al. Weedy rices – origin, biology, ecology and control. Plant Production and Protection Paper No. 188 (FAO, 2007).

  20. 20.

    Frisvold, G. A Social science perspective on weed management practices. In Proc. National Summit on Strategies to Manage Herbicide-Resistant Weeds 21–26 (The National Academies Press, 2012).

  21. 21.

    Cock, M. J. et al. The impacts of some classical biological control successes. CAB Rev. 10, 1–58 (2015).

  22. 22.

    Ostrom, E. Governing the commons: the evolution of institutions for collective action (Cambridge University Press, 1990).

  23. 23.

    Baggio, J. A. et al. Explaining success and failure in the commons: the configural nature of Ostrom’s institutional design principles. Int. J. Commons 10, 417–439 (2016).

  24. 24.

    Hardin, G. The tragedy of the commons. Science 13, 1243–1248 (1968).

  25. 25.

    Van Vugt, M. & Snyder, M. Cooperation in society: Fostering community action and civic participation. Am. Behav. Sci. 45, 765–768 (2002).

  26. 26.

    Bisaro, A. & Hinkel, J. Governance of social dilemmas in climate change adaptation. Nat. Clim. Change 6, 354–359 (2016).

  27. 27.

    Ostrom, E., Burger, J., Field, C. B., Norgaard, R. B. & Policansky, D. Revisiting the commons: local lessons, global challenges. Science 284, 278–282 (1999).

  28. 28.

    Araral, E. What explains collective action in the commons? Theory and evidence from the Philippines. World Dev. 37, 687–697 (2009).

  29. 29.

    Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2013).

  30. 30.

    Gutiérrez, N. L., Hilborn, R. & Defeo, O. Leadership, social capital and incentives promote successful fisheries. Nature 470, 386–389 (2011).

  31. 31.

    Ostrom, E. A general framework for analyzing sustainability of socio-ecological systems. Science 325, 419–422 (2009).

  32. 32.

    Poteete, A. R., Janssen, M. A. & Ostrom, E. Working together: collective action, the commons, and multiple methods in practice (Princeton University Press, 2010).

  33. 33.

    Yamagishi, T. The provision of a sanctioning system as a public good. J. Pers. Soc. Psychol. 51, 110–116 (1986).

  34. 34.

    Heckathorn, D. D. Collective action and the second-order free-rider problem. Ration. Soc. 1, 78–100 (1989).

  35. 35.

    Walker, J. M. & Halloran, M. A. Rewards and sanctions and the provision of public goods in one-shot settings. Exp. Econ. 7, 235–247 (2004).

  36. 36.

    Wade-Benzoni, K. A., Tenbrunsel, A. E. & Bazerman, M. H. Egocentric interpretations of fairness in asymmetric, environmental social dilemmas: explaining harvesting behaviour and the role of communication. Organ. Behav. Hum. Dec. 67, 111–126 (1996).

  37. 37.

    Hirshleifer, J. From weakest-link to best-shot: the voluntary provision of public goods. Public Choice 41, 371–386 (1983).

  38. 38.

    Sandler, T. Collective action: fifty years later. Public Choice 164, 195–216 (2015).

  39. 39.

    Erwin, D. & Jussaume, R. Integrating social science into managing herbicide-resistant weeds and associated environmental impacts. Weed Sci. 62, 403–414 (2014).

  40. 40.

    Graham, S. Social relations and natural resource management: the significance of trust and power to solving a collective weed management problem. PhD Thesis, Charles Sturt Univ. (2012).

  41. 41.

    Perrings, C. et al. Biological invasion risks and the public good: an economic perspective. Conserv. Ecol. 6, 1 (2002).

  42. 42.

    Burnett, K. M. Introductions of invasive species: failure of the weaker link. Agric. Resour. Econ. Rev. 35, 21–28 (2016).

  43. 43.

    Hennessy, D. A. Biosecurity incentives, network effects, and entry of a rapidly spreading pest. Ecol. Econ. 68, 230–239 (2008).

  44. 44.

    Devetag, G. & Ortmann, A. When and why? A critical survey on coordination failure in the laboratory. Exp. Econ. 10, 331–344 (2007).

  45. 45.

    International Cargo Cooperative Biosecurity Agreement. The Australian Government Department of Agriculture and Water Resources (2018).

  46. 46.

    Graham, S. et al. Opportunities for better use of collective action theory in research and governance for invasive species management. Conserv. Biol. 33, 275–287 (2019).

  47. 47.

    Graham, S. & Rogers, S. How local landholder groups collectively manage weeds in south-eastern Australia. Environ. Manage. 60, 396–408 (2017).

  48. 48.

    Craik, W., Palmer, D. & Sheldrake, R. Priorities for Australia’s biosecurity system: An independent review of the capacity of the national biosecurity system and its underpinning intergovernmental agreement (Government of Australia, 2017).

  49. 49.

    Parsons, W. T. & Cuthbertson, E. G. Noxious weeds of Australia (CSIRO Publishing, 2001).

  50. 50.

    Graham, S. Three cooperative pathways to solving a collective weed management problem. Australas. J. Env. Man. 20, 116–129 (2013).

  51. 51.

    Ziska, L. H. Weedy red) rice: an emerging constraint to global rice production. Adv. Agron. 129, 181–228 (2015).

  52. 52.

    Vincenheller, W. G. Rice growing in Arkansas 119–129 (Arkansas Agricultural Experiment Station, 1906).

  53. 53.

    Gealy, D. R. & Bryant, R. J. Seed physicochemical characteristics of field-grown US weedy red rice (Oryza sativa) biotypes: contrasts with commercial cultivars. J. Cereal Sci. 49, 239–245 (2009).

  54. 54.

    Valverde, B. E. The damage by weedy rice – can feral rice remain undetected? In Crop Ferality and Volunteerism (ed. Gressel, J.). 279–289 (Taylor & Francis Publishing Group, 2005).

  55. 55.

    Xia, H. B., Xia, H., Ellstrand, N. C., Yang, C. & Lu, B. R. Rapid evolutionary divergence and ecotype diversification of germination behavior in weedy rice populations. New Phytol. 191, 1119–1127 (2011).

  56. 56.

    Smith, R. J. Weed thresholds in southern U. S. rice (Oryza sativa). Weed Technol. 2, 232–241 (1988).

  57. 57.

    Ottis, B. V., Smith, K. L., Scott, R. C. & Talbert, R. E. Rice yield and quality as affected by cultivar and red rice (Oryza sativa) density. Weed Sci. 53, 499–504 (2005).

  58. 58.

    Nadir, S. et al. Weedy rice in sustainable rice production. A review. Agron. Sustain. Dev. 37, 46 (2017).

  59. 59.

    Singh, K. et al. Weedy rice: an emerging threat for direct-seeded rice production systems in India. J. Rice Res. 1, 106 (2013).

  60. 60.

    Frohlich, N. & Oppenheimer, J. A. I get by with a little help from my friends. World Polit. 23, 104–120 (1970).

  61. 61.

    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).

  62. 62.

    El-Azizi, A. F. & Gomaa, A. A. Certified rice seed production in Egypt in rice farming systems – new directions (International Rice Research Institute, 1989).

  63. 63.

    Pittelkow, C. M. et al. Sustainability of rice intensification in Uruguay from 1993 to 2013. Glob. Food Sec. 9, 10–18 (2016).

  64. 64.

    Zorrilla, G. Uruguay: lessons from a successful rice producer. Inter Press Service (2012).

  65. 65.

    Zorrilla, G. Uruguayan rice: the secrets of a success story. Rice Today 14, 18–19 (2015).

  66. 66.

    Hanson, B. D. et al. Herbicide-resistant weeds challenge some signature cropping systems. Calif. Agr. 68, 142–152 (2014).

  67. 67.

    Heap, I. International survey of herbicide resistant weeds (2019).

  68. 68.

    Smith, P. Herbicide-resistant weeds: what can the U. S. learn from Australia? AgFax Media (2017).

  69. 69.

    Culpepper, S. A. et al. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54, 620–626 (2006).

  70. 70.

    Palumbi, S. R. Humans as the world’s greatest evolutionary force. Science 293, 1786–1790 (2001).

  71. 71.

    Neve, P., Norsworthy, J. K., Smith, K. L. & Zelaya, I. A. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri. Weed Res. 51, 99–112 (2010).

  72. 72.

    Bagavathiannan, M. V., Norsworthy, J. K., Scott, R. C. & Barber, T. L. The spread of herbicide-resistant weeds: what should growers know? (University of Arkansas, 2013).

  73. 73.

    Bagavathiannan, M. V. & Norsworthy, J. K. Multiple-herbicide resistance is widespread in roadside Palmer amaranth populations. PLoS ONE 11, e0148748 (2016).

  74. 74.

    Neve, P., Norsworthy, J. K., Smith, K. L. & Zelaya, I. A. Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weed Technol. 25, 335–343 (2011).

  75. 75.

    Schwartz-Lazaro, L. M. et al. A midsouthern consultant’s survey on weed management practices in soybean. Weed Sci. 32, 116–125 (2018).

  76. 76.

    Beckie, H. J., Blackshaw, R. E., Hall, L. M. & Johnson, E. N. Pollen- and seed-mediated gene flow in kochia (Kochia scoparia). Weed Sci. 64, 624–633 (2016).

  77. 77.

    Michael, P. J., Owen, M. J. & Powles, S. B. Herbicide-resistant weed seeds contaminate grain sown in the Western Australian grainbelt. Weed Sci. 58, 466–472 (2010).

  78. 78.

    Beckie, H. J. et al. Glyphosate-resistant kochia (Kochia scoparia L. Schrad.) in Saskatchewan and Manitoba. Can. J. Plant Sci. 95, 345–349 (2015).

  79. 79.

    Barber, T. L., Smith, K. L., Scott, R. C., Norsworthy, J. K. & Vangilder, A. M. Zero tolerance: a community-based program for glyphosate-resistant Palmer amaranth management (University of Arkansas, 2015).

  80. 80.

    Smith et al. “Zero Tolerance”: a community-based management program for glyphosate-resistant Palmer amaranth in Arkansas. In 2015 Weed Science Society of America abstract (Weed Science Society of America, 2015).

  81. 81.

    Barratt, B. I. P., Moran, V. C., Bigler, F. & van Lenteren, J. D. The status of biological control and recommendations for improving uptake for the future. BioControl 63, 155–167 (2018).

  82. 82.

    Paynter, Q., Overton, J. M., Hill, R. L., Bellgard, S. E. & Dawson, M. I. Plant traits predict the success of weed biocontrol. J. Appl. Ecol. 49, 1140–1148 (2012).

  83. 83.

    Seastedt, T. R. Biological control of invasive plant species: a reassessment for the Anthropocene. New Phytol. 205, 490–502 (2015).

  84. 84.

    Clewey, G. D., Eschen, R., Shaw, R. H. & Wright, D. J. The effectiveness of classical biological control of invasive plants. J. Appl. Ecol. 46, 1287–1295 (2012).

  85. 85.

    Winston, R. L. et al. (eds) Biological control of weeds: A world catalogue of agents and their target weeds 5th edn (USDA Forest Service, 2014).

  86. 86.

    Paynter, Q. & Bellgard, S. Understanding dispersal rates of invading weed biocontrol agents. J. Appl. Ecol. 48, 407–414 (2011).

  87. 87.

    Morin, L. et al. Review of approaches to evaluate the effectiveness of weed biological control agents. BioControl 51, 1–15 (2009).

  88. 88.

    Louda, S. M., Pemberton, R. W., Johnson, M. T. & Follett, P. Nontarget effects-the Achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu. Rev. Entomol. 48, 365–396 (2003).

  89. 89.

    Suckling, D. M. & Sforza, R. F. H. What magnitude are observed non-target impacts from weed biocontrol? PLoS ONE 9, e84847 (2014).

  90. 90.

    Paynter, Q., Fowler, S. V., Hayer, L. & Hill, R. L. Factors affecting the cost of weed biocontrol programs in New Zealand. Biol. Control 80, 119–127 (2015).

  91. 91.

    Warner, K. D. et al. The decline of public interest agricultural science and the dubious future of crop biological control in California. Agric. Human Values 28, 483–496 (2011).

  92. 92.

    Upadhyaya, M. K. & Cranston, R. S. Distribution, biology, and control of hound’s-tongue in British Columbia. Rangelands 13, 103–106 (1991).

  93. 93.

    De Clerck-Floate, R. A. in Biological control programmes in Canada 2001–2012 (eds Mason, P. G. & Gillespie, D.) 309–315 (CABI Publishing, 2013).

  94. 94.

    De Clerck-Floate, R. & Wikeem, B. Influence of release size on establishment and impact of a root weevil for the biocontrol of houndstongue (Cynoglossum officinale). Biocontrol Sci. Techn. 19, 169–183 (2009).

  95. 95.

    Smith, E. G., De Clerck-Floate, R. A., Van Hezewijk, B. H., Moyer, J. R. & Pavlik, E. Costs of mass-producing the root weevil, Mogulones cruciger, a biological control agent for houndstongue (Cynoglossum officinale L.). BioControl 48, 281–286 (2009).

  96. 96.

    Catton, H. A., Lalonde, R. G. & De Clerck-Floate, R. A. Nontarget herbivory by a weed biocontrol insect is limited to spillover, reducing the chance of population-level impacts. Ecol. Appl. 25, 517–530 (2015).

  97. 97.

    Pest Alert: Mogulones cruciger (United States Department of Agriculture, 2010).

  98. 98.

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

  99. 99.

    Hershdorfer, M. E., Fernandez-Gimenez, M. E. & Howery, L. D. Key attributes influence the performance of local weed management programs in the southwest United States. Rangeland Ecol. Manag. 60, 225–234 (2007).

  100. 100.

    Newig, J. & Fritsch, O. Environmental governance: participatory, multi-level-and effective? Environ. Policy Gov. 19, 197–214 (2009).

Download references


This paper is an outcome of the Third International Workshop on Weeds and Invasive Plants (AnDiNA workshop series), held in Alberta, Canada in June 2016. We acknowledge the sponsorship provided by the Canadian Weed Science Society; the direction provided by B. Maxwell, Montana State University and R. D. Cousens, University of Melbourne; and the organizational support provided by L. Hall, University of Alberta. We also acknowledge the inputs provided by S. Peltzer (Government of Western Australia) and B. Schutte (New Mexico State University). Additionally, S. Graham acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities, through the “María de Maeztu” program for Units of Excellence (MDM-2015-0552).

Author information

M.B., S.G., Z.M., J.B., S.C., A.C., R.D., N.W., L.B., A.M., M.L., C.M., J.E., I.B. and H.B contributed to project planning, synthesis and writing. M.B. and S.G. contributed equally to the conceptualization and writing of this manuscript.

Correspondence to Muthukumar V. Bagavathiannan or Sonia Graham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading