Considering weed management as a social dilemma bridges individual and collective interests


Weeds pose severe threats to agricultural and natural landscapes worldwide. One major reason for the failure to effectively manage weeds at landscape scales is that current Best Management Practice guidelines, and research on how to improve such guidelines, focus too narrowly on property-level management decisions. Insufficiently considered are the aggregate effects of individual actions to determine landscape-scale outcomes, or whether there are collective practices that would improve weed management outcomes. Here, we frame landscape-scale weed management as a social dilemma, where trade-offs occur between individual and collective interests. We apply a transdisciplinary system approach—integrating the perspectives of ecologists, evolutionary biologists and agronomists into a social science theory of social dilemmas—to four landscape-scale weed management challenges: (i) achieving plant biosecurity, (ii) preventing weed seed contamination, (iii) maintaining herbicide susceptibility and (iv) sustainably using biological control. We describe how these four challenges exhibit characteristics of ‘public good problems’, wherein effective weed management requires the active contributions of multiple actors, while benefits are not restricted to these contributors. Adequate solutions to address these public good challenges often involve a subset of the eight design principles developed by Elinor Ostrom for ‘common pool social dilemmas’, together with design principles that reflect the public good nature of the problems. This paper is a call to action for scholars and practitioners to broaden our conceptualization and approaches to weed management problems. Such progress begins by evaluating the public good characteristics of specific weed management challenges and applying context-specific design principles to realize successful and sustainable weed management.


  1. 1.

    Williamson, M. Biological Invasions (Springer, 1996).

  2. 2.

    Parker, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19 (1999).

    Article  Google Scholar 

  3. 3.

    Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. S. 41, 59–80 (2010).

    Article  Google Scholar 

  4. 4.

    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).

    Article  Google Scholar 

  5. 5.

    DiTomaso, J. M. Invasive weeds in rangelands: species, impacts, and management. Weed Sci. 48, 255–265 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    Norsworthy, J. K. et al. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 60, 31–62 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Gill, N., Graham, S., Cross, R. & Taylor, E. Weed hygiene practices in rural industries and public land management: variable knowledge, patchy implementation, inconsistent coordination. J. Environ. Manage. 223, 140–149 (2018).

    Article  Google Scholar 

  8. 8.

    Panetta, F. D. Weed eradication feasibility: lessons of the 21st century. Weed Res. 55, 226–238

    Article  Google Scholar 

  9. 9.

    Hicks, H. L. et al. The factors driving evolved herbicide resistance at a national scale. Nat. Ecol. Evol. 2, 529–536 (2018).

    Article  Google Scholar 

  10. 10.

    Coutts, S. R., Yokomizo, H. & Buckley, Y. M. The behaviour of multiple independent managers and ecological traits interact to determine prevalence of weeds. Ecol. Appl. 23, 523–536 (2013).

    Article  Google Scholar 

  11. 11.

    Ervin, D. E. & Frisvold, G. B. Community-based approaches to herbicide-resistant weed management: lessons from science and practice. Weed Sci. 64, 609–626 (2016).

    Article  Google Scholar 

  12. 12.

    Graham, S. A new perspective on the trust-power nexus from rural Australia. J. Rural Stud. 36, 87–98 (2014).

    Article  Google Scholar 

  13. 13.

    Jussaume, R. A. & Ervin, D. Understanding weed resistance as a wicked problem to improve weed management decisions. Weed Sci. 64, 559–569 (2016).

    Article  Google Scholar 

  14. 14.

    Gould, F., Brown, S. Z. & Kuzma, J. Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Ma, Z., Clarke, M. & Church, S. Insights into individual and cooperative invasive plant management on family forestlands. Land Use Policy 75, 682–693 (2018).

    Article  Google Scholar 

  16. 16.

    Cox, M., Arnold, G. & Villamayor Tomás, S. A review of design principles for community-based natural resource management. Ecol. Soc. 15, 38 (2010).

    Article  Google Scholar 

  17. 17.

    Wilson, D. S., Ostrom, E. & Cox, M. E. Generalizing the core design principles for the efficacy of groups. J. Econ. Behav. Organ. 90, S21–S32 (2013).

    Article  Google Scholar 

  18. 18.

    Waage, J. K. & Mumford, J. D. Agricultural biosecurity. Philos. T. Roy. Soc. B 363, 863–876 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Delouche, J. C. et al. Weedy rices – origin, biology, ecology and control. Plant Production and Protection Paper No. 188 (FAO, 2007).

  20. 20.

    Frisvold, G. A Social science perspective on weed management practices. In Proc. National Summit on Strategies to Manage Herbicide-Resistant Weeds 21–26 (The National Academies Press, 2012).

  21. 21.

    Cock, M. J. et al. The impacts of some classical biological control successes. CAB Rev. 10, 1–58 (2015).

    Google Scholar 

  22. 22.

    Ostrom, E. Governing the commons: the evolution of institutions for collective action (Cambridge University Press, 1990).

  23. 23.

    Baggio, J. A. et al. Explaining success and failure in the commons: the configural nature of Ostrom’s institutional design principles. Int. J. Commons 10, 417–439 (2016).

    Article  Google Scholar 

  24. 24.

    Hardin, G. The tragedy of the commons. Science 13, 1243–1248 (1968).

    Google Scholar 

  25. 25.

    Van Vugt, M. & Snyder, M. Cooperation in society: Fostering community action and civic participation. Am. Behav. Sci. 45, 765–768 (2002).

    Article  Google Scholar 

  26. 26.

    Bisaro, A. & Hinkel, J. Governance of social dilemmas in climate change adaptation. Nat. Clim. Change 6, 354–359 (2016).

    Article  Google Scholar 

  27. 27.

    Ostrom, E., Burger, J., Field, C. B., Norgaard, R. B. & Policansky, D. Revisiting the commons: local lessons, global challenges. Science 284, 278–282 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Araral, E. What explains collective action in the commons? Theory and evidence from the Philippines. World Dev. 37, 687–697 (2009).

    Article  Google Scholar 

  29. 29.

    Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2013).

    Article  Google Scholar 

  30. 30.

    Gutiérrez, N. L., Hilborn, R. & Defeo, O. Leadership, social capital and incentives promote successful fisheries. Nature 470, 386–389 (2011).

    Article  Google Scholar 

  31. 31.

    Ostrom, E. A general framework for analyzing sustainability of socio-ecological systems. Science 325, 419–422 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Poteete, A. R., Janssen, M. A. & Ostrom, E. Working together: collective action, the commons, and multiple methods in practice (Princeton University Press, 2010).

  33. 33.

    Yamagishi, T. The provision of a sanctioning system as a public good. J. Pers. Soc. Psychol. 51, 110–116 (1986).

    Article  Google Scholar 

  34. 34.

    Heckathorn, D. D. Collective action and the second-order free-rider problem. Ration. Soc. 1, 78–100 (1989).

    Article  Google Scholar 

  35. 35.

    Walker, J. M. & Halloran, M. A. Rewards and sanctions and the provision of public goods in one-shot settings. Exp. Econ. 7, 235–247 (2004).

    Article  Google Scholar 

  36. 36.

    Wade-Benzoni, K. A., Tenbrunsel, A. E. & Bazerman, M. H. Egocentric interpretations of fairness in asymmetric, environmental social dilemmas: explaining harvesting behaviour and the role of communication. Organ. Behav. Hum. Dec. 67, 111–126 (1996).

    Article  Google Scholar 

  37. 37.

    Hirshleifer, J. From weakest-link to best-shot: the voluntary provision of public goods. Public Choice 41, 371–386 (1983).

    Article  Google Scholar 

  38. 38.

    Sandler, T. Collective action: fifty years later. Public Choice 164, 195–216 (2015).

    Article  Google Scholar 

  39. 39.

    Erwin, D. & Jussaume, R. Integrating social science into managing herbicide-resistant weeds and associated environmental impacts. Weed Sci. 62, 403–414 (2014).

    Article  Google Scholar 

  40. 40.

    Graham, S. Social relations and natural resource management: the significance of trust and power to solving a collective weed management problem. PhD Thesis, Charles Sturt Univ. (2012).

  41. 41.

    Perrings, C. et al. Biological invasion risks and the public good: an economic perspective. Conserv. Ecol. 6, 1 (2002).

    Article  Google Scholar 

  42. 42.

    Burnett, K. M. Introductions of invasive species: failure of the weaker link. Agric. Resour. Econ. Rev. 35, 21–28 (2016).

    Article  Google Scholar 

  43. 43.

    Hennessy, D. A. Biosecurity incentives, network effects, and entry of a rapidly spreading pest. Ecol. Econ. 68, 230–239 (2008).

    Article  Google Scholar 

  44. 44.

    Devetag, G. & Ortmann, A. When and why? A critical survey on coordination failure in the laboratory. Exp. Econ. 10, 331–344 (2007).

    Article  Google Scholar 

  45. 45.

    International Cargo Cooperative Biosecurity Agreement. The Australian Government Department of Agriculture and Water Resources (2018).

  46. 46.

    Graham, S. et al. Opportunities for better use of collective action theory in research and governance for invasive species management. Conserv. Biol. 33, 275–287 (2019).

    Article  Google Scholar 

  47. 47.

    Graham, S. & Rogers, S. How local landholder groups collectively manage weeds in south-eastern Australia. Environ. Manage. 60, 396–408 (2017).

    Article  Google Scholar 

  48. 48.

    Craik, W., Palmer, D. & Sheldrake, R. Priorities for Australia’s biosecurity system: An independent review of the capacity of the national biosecurity system and its underpinning intergovernmental agreement (Government of Australia, 2017).

  49. 49.

    Parsons, W. T. & Cuthbertson, E. G. Noxious weeds of Australia (CSIRO Publishing, 2001).

  50. 50.

    Graham, S. Three cooperative pathways to solving a collective weed management problem. Australas. J. Env. Man. 20, 116–129 (2013).

    Article  Google Scholar 

  51. 51.

    Ziska, L. H. Weedy red) rice: an emerging constraint to global rice production. Adv. Agron. 129, 181–228 (2015).

    Article  Google Scholar 

  52. 52.

    Vincenheller, W. G. Rice growing in Arkansas 119–129 (Arkansas Agricultural Experiment Station, 1906).

  53. 53.

    Gealy, D. R. & Bryant, R. J. Seed physicochemical characteristics of field-grown US weedy red rice (Oryza sativa) biotypes: contrasts with commercial cultivars. J. Cereal Sci. 49, 239–245 (2009).

    CAS  Article  Google Scholar 

  54. 54.

    Valverde, B. E. The damage by weedy rice – can feral rice remain undetected? In Crop Ferality and Volunteerism (ed. Gressel, J.). 279–289 (Taylor & Francis Publishing Group, 2005).

  55. 55.

    Xia, H. B., Xia, H., Ellstrand, N. C., Yang, C. & Lu, B. R. Rapid evolutionary divergence and ecotype diversification of germination behavior in weedy rice populations. New Phytol. 191, 1119–1127 (2011).

    Article  Google Scholar 

  56. 56.

    Smith, R. J. Weed thresholds in southern U. S. rice (Oryza sativa). Weed Technol. 2, 232–241 (1988).

    Article  Google Scholar 

  57. 57.

    Ottis, B. V., Smith, K. L., Scott, R. C. & Talbert, R. E. Rice yield and quality as affected by cultivar and red rice (Oryza sativa) density. Weed Sci. 53, 499–504 (2005).

    CAS  Article  Google Scholar 

  58. 58.

    Nadir, S. et al. Weedy rice in sustainable rice production. A review. Agron. Sustain. Dev. 37, 46 (2017).

    Article  Google Scholar 

  59. 59.

    Singh, K. et al. Weedy rice: an emerging threat for direct-seeded rice production systems in India. J. Rice Res. 1, 106 (2013).

    Article  Google Scholar 

  60. 60.

    Frohlich, N. & Oppenheimer, J. A. I get by with a little help from my friends. World Polit. 23, 104–120 (1970).

    Article  Google Scholar 

  61. 61.

    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).

    Article  Google Scholar 

  62. 62.

    El-Azizi, A. F. & Gomaa, A. A. Certified rice seed production in Egypt in rice farming systems – new directions (International Rice Research Institute, 1989).

  63. 63.

    Pittelkow, C. M. et al. Sustainability of rice intensification in Uruguay from 1993 to 2013. Glob. Food Sec. 9, 10–18 (2016).

    Article  Google Scholar 

  64. 64.

    Zorrilla, G. Uruguay: lessons from a successful rice producer. Inter Press Service (2012).

  65. 65.

    Zorrilla, G. Uruguayan rice: the secrets of a success story. Rice Today 14, 18–19 (2015).

    Google Scholar 

  66. 66.

    Hanson, B. D. et al. Herbicide-resistant weeds challenge some signature cropping systems. Calif. Agr. 68, 142–152 (2014).

    Article  Google Scholar 

  67. 67.

    Heap, I. International survey of herbicide resistant weeds (2019).

  68. 68.

    Smith, P. Herbicide-resistant weeds: what can the U. S. learn from Australia? AgFax Media (2017).

  69. 69.

    Culpepper, S. A. et al. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54, 620–626 (2006).

    CAS  Article  Google Scholar 

  70. 70.

    Palumbi, S. R. Humans as the world’s greatest evolutionary force. Science 293, 1786–1790 (2001).

    CAS  Article  Google Scholar 

  71. 71.

    Neve, P., Norsworthy, J. K., Smith, K. L. & Zelaya, I. A. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri. Weed Res. 51, 99–112 (2010).

    Article  Google Scholar 

  72. 72.

    Bagavathiannan, M. V., Norsworthy, J. K., Scott, R. C. & Barber, T. L. The spread of herbicide-resistant weeds: what should growers know? (University of Arkansas, 2013).

  73. 73.

    Bagavathiannan, M. V. & Norsworthy, J. K. Multiple-herbicide resistance is widespread in roadside Palmer amaranth populations. PLoS ONE 11, e0148748 (2016).

    Article  Google Scholar 

  74. 74.

    Neve, P., Norsworthy, J. K., Smith, K. L. & Zelaya, I. A. Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weed Technol. 25, 335–343 (2011).

    CAS  Article  Google Scholar 

  75. 75.

    Schwartz-Lazaro, L. M. et al. A midsouthern consultant’s survey on weed management practices in soybean. Weed Sci. 32, 116–125 (2018).

    Google Scholar 

  76. 76.

    Beckie, H. J., Blackshaw, R. E., Hall, L. M. & Johnson, E. N. Pollen- and seed-mediated gene flow in kochia (Kochia scoparia). Weed Sci. 64, 624–633 (2016).

    Article  Google Scholar 

  77. 77.

    Michael, P. J., Owen, M. J. & Powles, S. B. Herbicide-resistant weed seeds contaminate grain sown in the Western Australian grainbelt. Weed Sci. 58, 466–472 (2010).

    CAS  Article  Google Scholar 

  78. 78.

    Beckie, H. J. et al. Glyphosate-resistant kochia (Kochia scoparia L. Schrad.) in Saskatchewan and Manitoba. Can. J. Plant Sci. 95, 345–349 (2015).

    CAS  Article  Google Scholar 

  79. 79.

    Barber, T. L., Smith, K. L., Scott, R. C., Norsworthy, J. K. & Vangilder, A. M. Zero tolerance: a community-based program for glyphosate-resistant Palmer amaranth management (University of Arkansas, 2015).

  80. 80.

    Smith et al. “Zero Tolerance”: a community-based management program for glyphosate-resistant Palmer amaranth in Arkansas. In 2015 Weed Science Society of America abstract (Weed Science Society of America, 2015).

  81. 81.

    Barratt, B. I. P., Moran, V. C., Bigler, F. & van Lenteren, J. D. The status of biological control and recommendations for improving uptake for the future. BioControl 63, 155–167 (2018).

    Article  Google Scholar 

  82. 82.

    Paynter, Q., Overton, J. M., Hill, R. L., Bellgard, S. E. & Dawson, M. I. Plant traits predict the success of weed biocontrol. J. Appl. Ecol. 49, 1140–1148 (2012).

    Article  Google Scholar 

  83. 83.

    Seastedt, T. R. Biological control of invasive plant species: a reassessment for the Anthropocene. New Phytol. 205, 490–502 (2015).

    Article  Google Scholar 

  84. 84.

    Clewey, G. D., Eschen, R., Shaw, R. H. & Wright, D. J. The effectiveness of classical biological control of invasive plants. J. Appl. Ecol. 46, 1287–1295 (2012).

    Article  Google Scholar 

  85. 85.

    Winston, R. L. et al. (eds) Biological control of weeds: A world catalogue of agents and their target weeds 5th edn (USDA Forest Service, 2014).

  86. 86.

    Paynter, Q. & Bellgard, S. Understanding dispersal rates of invading weed biocontrol agents. J. Appl. Ecol. 48, 407–414 (2011).

    Article  Google Scholar 

  87. 87.

    Morin, L. et al. Review of approaches to evaluate the effectiveness of weed biological control agents. BioControl 51, 1–15 (2009).

    Google Scholar 

  88. 88.

    Louda, S. M., Pemberton, R. W., Johnson, M. T. & Follett, P. Nontarget effects-the Achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu. Rev. Entomol. 48, 365–396 (2003).

    CAS  Article  Google Scholar 

  89. 89.

    Suckling, D. M. & Sforza, R. F. H. What magnitude are observed non-target impacts from weed biocontrol? PLoS ONE 9, e84847 (2014).

    Article  Google Scholar 

  90. 90.

    Paynter, Q., Fowler, S. V., Hayer, L. & Hill, R. L. Factors affecting the cost of weed biocontrol programs in New Zealand. Biol. Control 80, 119–127 (2015).

    Article  Google Scholar 

  91. 91.

    Warner, K. D. et al. The decline of public interest agricultural science and the dubious future of crop biological control in California. Agric. Human Values 28, 483–496 (2011).

    Article  Google Scholar 

  92. 92.

    Upadhyaya, M. K. & Cranston, R. S. Distribution, biology, and control of hound’s-tongue in British Columbia. Rangelands 13, 103–106 (1991).

    Google Scholar 

  93. 93.

    De Clerck-Floate, R. A. in Biological control programmes in Canada 2001–2012 (eds Mason, P. G. & Gillespie, D.) 309–315 (CABI Publishing, 2013).

  94. 94.

    De Clerck-Floate, R. & Wikeem, B. Influence of release size on establishment and impact of a root weevil for the biocontrol of houndstongue (Cynoglossum officinale). Biocontrol Sci. Techn. 19, 169–183 (2009).

    Article  Google Scholar 

  95. 95.

    Smith, E. G., De Clerck-Floate, R. A., Van Hezewijk, B. H., Moyer, J. R. & Pavlik, E. Costs of mass-producing the root weevil, Mogulones cruciger, a biological control agent for houndstongue (Cynoglossum officinale L.). BioControl 48, 281–286 (2009).

    Google Scholar 

  96. 96.

    Catton, H. A., Lalonde, R. G. & De Clerck-Floate, R. A. Nontarget herbivory by a weed biocontrol insect is limited to spillover, reducing the chance of population-level impacts. Ecol. Appl. 25, 517–530 (2015).

    Article  Google Scholar 

  97. 97.

    Pest Alert: Mogulones cruciger (United States Department of Agriculture, 2010).

  98. 98.

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    CAS  Article  Google Scholar 

  99. 99.

    Hershdorfer, M. E., Fernandez-Gimenez, M. E. & Howery, L. D. Key attributes influence the performance of local weed management programs in the southwest United States. Rangeland Ecol. Manag. 60, 225–234 (2007).

    Article  Google Scholar 

  100. 100.

    Newig, J. & Fritsch, O. Environmental governance: participatory, multi-level-and effective? Environ. Policy Gov. 19, 197–214 (2009).

    Article  Google Scholar 

Download references


This paper is an outcome of the Third International Workshop on Weeds and Invasive Plants (AnDiNA workshop series), held in Alberta, Canada in June 2016. We acknowledge the sponsorship provided by the Canadian Weed Science Society; the direction provided by B. Maxwell, Montana State University and R. D. Cousens, University of Melbourne; and the organizational support provided by L. Hall, University of Alberta. We also acknowledge the inputs provided by S. Peltzer (Government of Western Australia) and B. Schutte (New Mexico State University). Additionally, S. Graham acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities, through the “María de Maeztu” program for Units of Excellence (MDM-2015-0552).

Author information




M.B., S.G., Z.M., J.B., S.C., A.C., R.D., N.W., L.B., A.M., M.L., C.M., J.E., I.B. and H.B contributed to project planning, synthesis and writing. M.B. and S.G. contributed equally to the conceptualization and writing of this manuscript.

Corresponding authors

Correspondence to Muthukumar V. Bagavathiannan or Sonia Graham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagavathiannan, M.V., Graham, S., Ma, Z. et al. Considering weed management as a social dilemma bridges individual and collective interests. Nat. Plants 5, 343–351 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing