Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice

An Author Correction to this article was published on 16 May 2019

This article has been updated

Abstract

Breeding crops with resistance is an efficient way to control diseases. However, increased resistance often has a fitness penalty. Thus, simultaneously increasing disease resistance and yield potential is a challenge in crop breeding. In this study, we found that downregulation of microRNA-156 (miR-156) and overexpression of Ideal Plant Architecture1 (IPA1) and OsSPL7, two target genes of miR-156, enhanced disease resistance against bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), but reduced rice yield. We discovered that gibberellin signalling might be partially responsible for the disease resistance and developmental defects in IPA1 overexpressors. We then generated transgenic rice plants expressing IPA1 with the pathogen-inducible promoter of OsHEN1; these plants had both enhanced disease resistance and enhanced yield-related traits. Thus, we have identified miR-156–IPA1 as a novel regulator of the crosstalk between growth and defence, and we have established a new strategy for obtaining both high disease resistance and high yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mi-R156 negatively regulates disease resistance.
Fig. 2: IPA1 and OsSPL7 overexpressors enhance disease resistance.
Fig. 3: IPA1 and OsSPL7 physically interact with SLR1.
Fig. 4: IPA1 and OsSPL7 reduce GA-mediated disease susceptibility by stabilizing SLR1.
Fig. 5: IPA1-mediated resistance partially depends on GA metabolism.
Fig. 6: Enhancement of disease resistance by IPA1 partially depends on SLR1.
Fig. 7: Inducible overexpression of IPA1 increases disease resistance.
Fig. 8: HIP transgenic rice exhibits high-yield potential.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files).

Change history

  • 16 May 2019

    In the Supplementary Information file originally published with this Article, the authors mistakenly omitted accompanying legends for Supplementary Figures 1–15; this has now been amended.

References

  1. Brown, J. K. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5, 339–344 (2002).

    Article  CAS  Google Scholar 

  2. Smakowska, E., Kong, J., Busch, W. & Belkhadir, Y. Organ-specific regulation of growth–defense tradeoffs by plants. Curr. Opin. Plant Biol. 29, 129–137 (2016).

    Article  CAS  Google Scholar 

  3. Ning, Y., Liu, W. & Wang, G. L. Balancing immunity and yield in crop plants. Trends Plant Sci. 22, 1069–1079 (2017).

    Article  CAS  Google Scholar 

  4. Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).

    Article  CAS  Google Scholar 

  5. Strange, R. N. & Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43, 83–116 (2005).

    Article  CAS  Google Scholar 

  6. Lorrain, S., Vailleau, F., Balague, C. & Roby, D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8, 263–271 (2003).

    Article  CAS  Google Scholar 

  7. Bruggeman, Q., Raynaud, C., Benhamed, M. & Delarue, M. To die or not to die? Lessons from lesion mimic mutants. Front. Plant Sci. 6, 24 (2015).

    Article  Google Scholar 

  8. Chakraborty, J., Ghosh, P. & Das, S. Autoimmunity in plants. Planta 248, 751–767 (2018).

    Article  CAS  Google Scholar 

  9. Brown, J. K. A cost of disease resistance: paradigm or peculiarity? Trends Genet. 19, 667–671 (2003).

    Article  CAS  Google Scholar 

  10. Nelson, R., Wiesner-Hanks, T., Wisser, R. & Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21–33 (2018).

    Article  CAS  Google Scholar 

  11. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  Google Scholar 

  12. Tian, D. et al. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77 (2003).

    Article  CAS  Google Scholar 

  13. Deng, Y. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962–965 (2017).

    Article  CAS  Google Scholar 

  14. Spoel, S. H. & Dong, X. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3, 348–351 (2008).

    Article  CAS  Google Scholar 

  15. Robert-Seilaniantz, A., Grant, M. & Jones, J. D. Hormone crosstalk in plant disease and defense: more than just jasmonate–salicylate antagonism. Annu. Rev. Phytopathol. 49, 317–343 (2011).

    Article  CAS  Google Scholar 

  16. Pieterse, C. M. et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).

    Article  CAS  Google Scholar 

  17. Yang, D. L., Yang, Y. & He, Z. Roles of plant hormones and their interplay in rice immunity. Mol. Plant 6, 675–685 (2013).

    Article  CAS  Google Scholar 

  18. Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T. & Tsuda, K. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55, 401–425 (2017).

    Article  CAS  Google Scholar 

  19. Wang, D. et al. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17, 1784–1790 (2007).

    Article  CAS  Google Scholar 

  20. Ding, X. et al. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20, 228–240 (2008).

    Article  CAS  Google Scholar 

  21. Li, X. et al. The systemic acquired resistance regulator OsNPR1 attenuates growth by repressing auxin signaling through promoting IAA-amido synthase expression. Plant Physiol. 172, 546–558 (2016).

    Article  CAS  Google Scholar 

  22. Kazan, K. & Manners, J. M. Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 14, 373–382 (2009).

    Article  CAS  Google Scholar 

  23. Hou, X., Lee, L. Y., Xia, K., Yan, Y. & Yu, H. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19, 884–894 (2010).

    Article  CAS  Google Scholar 

  24. Yang, D. L. et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl Acad. Sci. USA 109, E1192–E1200 (2012).

    Article  CAS  Google Scholar 

  25. Li, W. et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114–126 (2017).

    Article  CAS  Google Scholar 

  26. Xu, G. et al. uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491–494 (2017).

    Article  CAS  Google Scholar 

  27. Fu, D. et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357–1360 (2009).

    Article  CAS  Google Scholar 

  28. Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363 (2009).

    Article  CAS  Google Scholar 

  29. Sasaki, A. et al. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702 (2002).

    Article  CAS  Google Scholar 

  30. Spielmeyer, W., Ellis, M. H. & Chandler, P. M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl Acad. Sci. USA 99, 9043–9048 (2002).

    Article  CAS  Google Scholar 

  31. Liu, C. et al. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Mol. Plant 11, 288–299 (2018).

    Article  CAS  Google Scholar 

  32. Yang, D. L. et al. Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol. Plant 1, 528–537 (2008).

    Article  CAS  Google Scholar 

  33. Qin, X. et al. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol. Plant Microbe Interact. 26, 227–239 (2013).

    Article  CAS  Google Scholar 

  34. De, Vleesschauwer, D. et al. The DELLA protein SLR1 integrates and amplifies salicylic acid- and jasmonic acid-dependent innate immunity in rice. Plant Physiol. 170, 1831–1847 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Wang, J. W., Czech, B. & Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749 (2009).

    Article  CAS  Google Scholar 

  36. Wu, G. et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759 (2009).

    Article  CAS  Google Scholar 

  37. Yu, N. et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 22, 2322–2335 (2010).

    Article  CAS  Google Scholar 

  38. Xing, S. et al. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22, 3935–3950 (2010).

    Article  CAS  Google Scholar 

  39. Yu, S. et al. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell 24, 3320–3332 (2012).

    Article  CAS  Google Scholar 

  40. Xu, M. et al. Developmental functions of miR156-regulated SQUAMOSA promoter binding protein-like (SPL) genes in Arabidopsis thaliana. PLoS Genet. 12, e1006263 (2016).

    Article  Google Scholar 

  41. Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  Google Scholar 

  42. Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article  CAS  Google Scholar 

  43. Zhang, L. et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8, 14789 (2017).

    Article  CAS  Google Scholar 

  44. Li, Y. et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol. 164, 1077–1092 (2014).

    Article  CAS  Google Scholar 

  45. Dai, Z. et al. Modulation of plant architecture by the miR156f–OsSPL7–OsGH3.8 pathway in rice. J. Exp. Bot. 69, 5117–5130 (2018).

    Article  CAS  Google Scholar 

  46. Wang, J. et al. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026–1028 (2018).

    Article  CAS  Google Scholar 

  47. Xie, K., Wu, C. & Xiong, L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142, 280–293 (2006).

    Article  CAS  Google Scholar 

  48. Ueguchi-Tanaka, M. et al. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19, 2140–2155 (2007).

    Article  CAS  Google Scholar 

  49. Hirano, K. et al. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22, 2680–2696 (2010).

    Article  CAS  Google Scholar 

  50. Zhu, Y. et al. Elongated uppermost internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18, 442–456 (2006).

    Article  CAS  Google Scholar 

  51. Luo, A. et al. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol. 47, 181–191 (2006).

    Article  CAS  Google Scholar 

  52. Lu, Z. et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743–3759 (2013).

    Article  CAS  Google Scholar 

  53. Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  CAS  Google Scholar 

  54. Weiberg, A., Wang, M., Bellinger, M. & Jin, H. Small RNAs: a new paradigm in plant–microbe interactions. Annu. Rev. Phytopathol. 52, 495–516 (2014).

    Article  CAS  Google Scholar 

  55. Cai, Q., He, B., Kogel, K. H. & Jin, H. Cross-kingdom RNA trafficking and environmental RNAi—nature’s blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 46, 58–64 (2018).

    Article  CAS  Google Scholar 

  56. Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006).

    Article  CAS  Google Scholar 

  57. Wang, Z. et al. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Plant J. 95, 584–597 (2018).

    Article  CAS  Google Scholar 

  58. Wang, S. et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950–954 (2012).

    Article  CAS  Google Scholar 

  59. Peng, J. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    Article  CAS  Google Scholar 

  60. Mao, Y. B. et al. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat. Commun. 8, 13925 (2017).

    Article  CAS  Google Scholar 

  61. Zhang, Y. et al. Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Res. 18, 412–421 (2008).

    Article  CAS  Google Scholar 

  62. Chen, H. et al. Firefly luciferase complementation imaging assay for protein–protein interactions in plants. Plant Physiol. 146, 368–376 (2008).

    Article  CAS  Google Scholar 

  63. Waadt, R. et al. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J. 56, 505–516 (2008).

    Article  CAS  Google Scholar 

  64. Zhou, F. et al. D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504, 406–410 (2013).

    Article  CAS  Google Scholar 

  65. Ma, X. et al. CHR729 is a CHD3 protein that controls seedling development in rice. PLoS ONE 10, e0138934 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0100600), the Natural Science Foundation of Jiangsu (BK20170027 and BK20150659), the National Key Transformation Program (2016ZX08001002), the Fundamental Research Funds for the Central Universities (KYZ201503, KJJQ201801 and KYZ201812), the National Natural Science Foundation of China (31671340), the Innovative Project of State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZZ2017009), and Jiangsu Collaborative Innovation Center for Modern Crop Production to D.-L.Y.

Author information

Authors and Affiliations

Authors

Contributions

M.L. conducted most of the experiments. Z.S. generated the MIM156, miR-156-OE and OsSPL7-OE transgenic plants. X.Z. and M.W. contributed to disease analysis. L.Z. generated the IPA1-OE transgenic rice plants. K.Z. and J.L. characterized the morphological phenotypes. C.D. generated the SLR1 antibody. X.H., Q.Q. and Z.H. contributed analysis reagents. D.-L.Y. designed the experiments and wrote the manuscript. All authors discussed the data and contributed to the manuscript.

Corresponding author

Correspondence to Dong-Lei Yang.

Ethics declarations

Competing interests

Based on the results in this study, the authors have applied for patents (application no. 201811001480.8 and 201811002033.4).

Additional information

Journal peer review information: Nature Plants thanks Beat Keller and Mingliang Xu for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15.

Reporting Summary

Supplementary Table 1

Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Shi, Z., Zhang, X. et al. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat. Plants 5, 389–400 (2019). https://doi.org/10.1038/s41477-019-0383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0383-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research