Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits

Abstract

Photosystem I (PSI) is a highly efficient natural light-energy converter, and has diverse light-harvesting antennas associated with its core in different photosynthetic organisms. In green algae, an extremely large light-harvesting complex I (LHCI) captures and transfers energy to the PSI core. Here, we report the structure of PSI–LHCI from a green alga Bryopsis corticulans at 3.49 Å resolution, obtained by single-particle cryo-electron microscopy, which revealed 13 core subunits including subunits characteristic of both prokaryotes and eukaryotes, and 10 light-harvesting complex a (Lhca) antennas that form a double semi-ring and an additional Lhca dimer, including a novel four-transmembrane-helix Lhca. In total, 244 chlorophylls were identified, some of which were located at key positions for the fast energy transfer. These results provide a firm structural basis for unravelling the mechanisms of light-energy harvesting, transfer and quenching in the green algal PSI–LHCI, and important clues as to how PSI–LHCI has changed during evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of the PSI–LHCI supercomplex from B. corticulans.
Fig. 2: Structures of Lhcas.
Fig. 3: Interactions between the outer and inner Lhcas and between the additional Lhca dimers and the PSI core.
Fig. 4: Chlorophyll arrangement in the Lhca subunits of B. corticulans.
Fig. 5: Carotenoid arrangement in the green algal PSI–LHCI supercomplex.
Fig. 6: Possible energy-transfer pathways in the PSI–LHCI supercomplex of B. corticulans.
Fig. 7: Evolutionary scheme for the structural changes of PSI–LHCI from cyanobacteria to higher plants.

Similar content being viewed by others

Data availability

The cryo-EM density map and atomic models for the PSI–LHCI supercomplex structure at 3.49 Å have been deposited in the Electron Microscopy Data Bank and the Protein Data Bank under accession codes EMD-9670 and 6IGZ, respectively. The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Watanabe, M. & Ikeuchi, M. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116, 265–276 (2013).

    Article  CAS  Google Scholar 

  2. Zhang, J. et al. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551, 57–63 (2017).

    Article  Google Scholar 

  3. Büchel, C. Evolution and function of light harvesting proteins. J. Plant Physiol. 172, 62–75 (2015).

    Article  Google Scholar 

  4. Pi, X. et al. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl Acad. Sci. USA 115, 4423–4428 (2018).

    Article  CAS  Google Scholar 

  5. Germano, M. et al. Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett. 525, 121–125 (2002).

    Article  CAS  Google Scholar 

  6. Kargul, J., Nield, J. & Barber, J. Three-dimensional reconstruction of a light-harvesting complex I-photosystem I (LHCI–PSI) supercomplex from the green alga Chlamydomonas reinhardtii—insights into light harvesting for PSI. J. Biol. Chem. 278, 16135–16141 (2003).

    Article  CAS  Google Scholar 

  7. Kargul, J. et al. Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under state 2 conditions. FEBS J. 272, 4797–4806 (2005).

    Article  CAS  Google Scholar 

  8. Takahashi, Y., Yasui, T., Stauber, E. J. & Hippler, M. Comparison of the subunit compositions of the PSI–LHCI supercomplex and the LHCI in the green alga Chlamydomonas reinhardtii. Biochemistry 43, 7816–7823 (2004).

    Article  CAS  Google Scholar 

  9. Qin, X., Suga, M., Kuang, T. & Shen, J.-R. Structural basis for energy transfer pathways in the plant PSI–LHCI supercomplex. Science 348, 989–995 (2015).

    Article  CAS  Google Scholar 

  10. Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017).

    Article  CAS  Google Scholar 

  11. Suga, M., Qin, X., Kuang, T. & Shen, J.-R. Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex. Curr. Opin. Struct. Biol. 39, 46–53 (2016).

    Article  CAS  Google Scholar 

  12. Giera, W. et al. Excitation dynamics in photosystem I from Chlamydomonas reinhardtii. Comparative studies of isolated complexes and whole cells. Biochim. Biophys. Acta 1837, 1756–1768 (2014).

    Article  CAS  Google Scholar 

  13. Quiniou, C. L. et al. PSI–LHCI of Chlamydomonas reinhardtii: increasing the absorption cross section without losing efficiency. Biochim. Biophys. Acta 1847, 458–467 (2015).

    Article  Google Scholar 

  14. Giovagnetti, V. et al. A siphonous morphology affects light-harvesting modulation in the intertidal green macroalga Bryopsis corticulans (Ulvophyceae). Planta 247, 1293–1306 (2018).

    Article  CAS  Google Scholar 

  15. Wang, W. et al. Spectral and functional studies on siphonaxanthin-type light-harvesting complex of photosystem II from Bryopsis corticulans. Photosynth. Res. 117, 267–279 (2013).

    Article  CAS  Google Scholar 

  16. Qin, X. et al. Isolation and characterization of a PSI–LHCI super-complex and its sub-complexes from a siphonaceous marine green alga Bryopsis corticulans. Photosynth. Res. 123, 61–76 (2015).

    Article  CAS  Google Scholar 

  17. Pan, X. et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360, 1109–1113 (2018).

    Article  CAS  Google Scholar 

  18. Busch, A. & Hippler, M. The structure and function of eukaryotic photosystem I. Biochim. Biophys. Acta 1807, 864–877 (2011).

    Article  CAS  Google Scholar 

  19. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    Article  CAS  Google Scholar 

  20. Rochaix, J. D. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 65, 287–309 (2014).

    Article  CAS  Google Scholar 

  21. Kana, R. et al. Phycobilisome mobility and its role in the regulation of light harvesting in red algae. Plant Physiol. 165, 1618–1631 (2014).

    Article  CAS  Google Scholar 

  22. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    Article  CAS  Google Scholar 

  23. Fan, M. et al. Crystal structures of the PsbS protein essential for photoprotection in plants. Nat. Struct. Mol. Biol. 22, 729–735 (2015).

    Article  CAS  Google Scholar 

  24. Green, B. R. & Pichersky, E. Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth. Res. 39, 149–162 (1994).

    Article  CAS  Google Scholar 

  25. Drop, B., Yadav, K. N. S., Boekema, E. J. & Croce, R. Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Plant J. 78, 181–191 (2014).

    Article  CAS  Google Scholar 

  26. Steinbeck, J. et al. Structure of a PSI–LHCI–cyt b 6 f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions. Proc. Natl Acad. Sci. USA 115, 10517–10522 (2018).

    Article  CAS  Google Scholar 

  27. Drop, B. et al. Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J. Biol. Chem. 286, 44878–44887 (2011).

    Article  CAS  Google Scholar 

  28. Ozawa, S.-I. et al. Configuration of ten light-harvesting chlorophyll a/b complex I subunits in Chlamydomonas reinhardtii photosystem I. Plant Physiol. 178, 583–595 (2018).

    Article  CAS  Google Scholar 

  29. Croce, R. & van Amerongen, H. Light-harvesting in photosystem I. Photosynth. Res. 116, 153–166 (2013).

    Article  CAS  Google Scholar 

  30. Novoderezhkin, V. I., Palacios, M. A., van Amerongen, H. & van Grondelle, R. Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure. J. Phys. Chem. B 109, 10493–10504 (2005).

    Article  CAS  Google Scholar 

  31. Kuang, T., Argyroudi-Akoyunoglou, J. H., Nakatani, H. Y., Watson, J. & Arntzen, C. J. The origin of the long-wavelength fluorescence emission band (77 K) from photosystem I. Arch. Biochem. Biophys. 235, 618–627 (1984).

    Article  CAS  Google Scholar 

  32. Ikeuchi, M. & Inoue, Y. A new 4.8-kDa polypeptide intrinsic to the PSII reaction center, as revealed by modified SDS–PAGE with improved resolution of low-molecular-weight proteins. Plant Cell Physiol. 29, 1233–1239 (1988).

    CAS  Google Scholar 

  33. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    Article  CAS  Google Scholar 

  34. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).

    Article  CAS  Google Scholar 

  35. Katayama, H., Nagasu, T. & Oda, Y. Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 15, 1416–1421 (2001).

    Article  CAS  Google Scholar 

  36. Lei, J. & Frank, J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J. Struct. Biol. 150, 69–80 (2005).

    Article  Google Scholar 

  37. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  Google Scholar 

  38. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  Google Scholar 

  39. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  Google Scholar 

  40. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  41. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  Google Scholar 

  42. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  Google Scholar 

  43. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  44. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  Google Scholar 

  45. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  46. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank J. Lei and the staff at the Tsinghua University Branch of the National Center for Protein Sciences Beijing for providing facility support, and the Explorer 100 cluster system of the Tsinghua National Laboratory for Information Science and Technology for providing computation resources. We thank S. Qin and Z. Liu from Yantai Institute of Coastal Zone Research, CAS for assistance in collecting B. corticulans, L. Shu from Shanghai Luming Biotechnology for mass spectrometry analysis. The project was funded by the National Key R&D Program of China (2017YFA0503700, 2016YFA0501101, 2015CB150101); the National Natural Science Foundation of China (31622007, 31670237, 31600191); a Strategic Priority Research Program of CAS (XDB17000000); State Key Laboratory of Membrane Biology; and Taishan Scholars Project.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and S.-F.S. conceived the project; X.Q. performed the sample preparation, characterization and sequence analysis; X.P. processed the cryo-EM data, built and refined the structure model; W.W. and G.H. assisted in sample preparation; L.Z. and M.L. cloned Lhcas from B. corticulans and assisted in sequence analysis; X.Q. and X.P. analysed the structure; X.Q., X.P., J.-R.S., T.K. and S.-F.S. wrote the manuscript and all authors discussed and commented on the results and the manuscript.

Corresponding authors

Correspondence to Tingyun Kuang or Sen-Fang Sui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Plants thanks Egbert Boekema, Jean-David Rochaix and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–18, Supplementary Tables 1 and 2, and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Pi, X., Wang, W. et al. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat. Plants 5, 263–272 (2019). https://doi.org/10.1038/s41477-019-0379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0379-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing